Advertisements
Advertisements
प्रश्न
`("dy")/("d"x) = 2x"e"^(x^2 - "y")` का व्यापक हल है
विकल्प
`"e"^(x^2 - "y")` = c
`"e"^-"y" + "e"^(x^2)` = c
`"e"^-"y" = "e"^(x^2)` + c
`"e"^(x^2 + "y")` = c
उत्तर
सही उत्तर `underline("e"^-"y" = "e"^(x^2) + "c")` है।
व्याख्या:
दिया गया अवकल समीकरण `("dy")/("d"x) = 2x"e"^(x^2 - "y")` है।
⇒ `("dy")/("d"x) = 2x . "e"^(x^2) . "e"^-"y"`
⇒ `("dy")/("e"^-"y") = 2x . "e"^(x^2) "d"x`
दोनों पक्षों का समाकलन करने पर हमें प्राप्त होता है
`int ("dy")/("e"^-"y") = int 2x . "e"^(x^2) "d"x`
⇒ `int "e"^"y" "dy" = int 2x . "e"^(x^2) "d"x`
R.H.S. में x2 = t रखिए
∴ 2x dx = dt
∴ `int "e"^"y" "dy" = int "e"^"t" "dt"`
⇒ ey = et + c
⇒ ey = `"e"^("y"^2) + "c"`
APPEARS IN
संबंधित प्रश्न
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`dy/dx + (sec x)y = tan x (0 <= x <= pi/2)`
अवकल समीकरण `(1 - y^2) dy/dx + yx = ay (-1 < y < 1)` का समाकलन गुणक है:
वक्रों के कुल y = Ae2x + B.e–2x के लिए अवकल समीकरण ज्ञात कीजिए।
अवकल समीकरण `"dy"/"dx" = y/x` का व्यापक हल ज्ञात कीजिए।
अवकल समीकरण `"dy"/"dx"` = yex, x = 0, y = e में y का मान बताएं जब x = 1
अवकल समीकरण `"dy"/"dx" + y/x` = x2 को हल कीजिए।
एक तल में सभी अक्षैतिज रेखाओं का अवकल समीकरण ज्ञात कीजिए।
अवकल समीकरण `2x * "dy"/"dx" y` = 3 का हल किस कुल को निरूपित करता है?
अवकल समीकरण `("dy"/"dx")^2 - x "dy"/"dx" + "y"` = 0 का एक हल है
निम्न में से कौन सा x और y में समघातीय फलन नहीं है।
F(x, y) = `(x^2 + y^2)/(x - y)` कोटि 1 का समघातीय फलन है।
`"dy"/"dx"` = 2y–x का हल ज्ञात कीजिए।
वह अवकल समीकरण ज्ञात कीजिए जिसका व्यापक हल y = (sin–1x)2 + Acos–1x + B है जहाँ A और B स्वेच्छ अचर हैं।
उस वक्र का समीकरण ज्ञात कीजिए जो मूल बिंदु से होकर जाता है और अवकल समीकरण `(1 + x^2) "dy"/"dx" + 2x"y"` = 4x2 को संतुष्ट करता है।
`x^2 "dy"/"dx"` = x2 + xy + y2 को हल कीजिए।
केंद्र (1, 2) वाले सभी सकेंद्री वृत्तों के कुल का अवकल समीकरण ज्ञात कीजिए।
(1 + tany)(dx – dy) + 2xdy = 0 का व्यापक हल ज्ञात कीजिए।
`("dy")/("d"x) = cos(x + "y") + sin(x + "y")` को हल कीजिए [संकेत : x + y = z रखिए]
`x ("dy")/("d"x) = "y" (log "y" – log x + 1)` को हल कीजिए।
अवकल समीकरण `("d"^2"y")/("d"x^2) + (("dy")/("d"x))^(1/4) + x^(1/5)` = 0, के कोटि और घात क्रमश: हैं
अवकल समीकरण xdy – ydx = 0 का हल निरूपित करता है एक ______
अवकल समीकरण `"y" ("dy")/("d"x) + "c"` निरूपित करता है
अवकल समीकरण `("d"^2"y")/("d"x^2) + (("dy")/("d"x))^3 + 6"y"^5` = 0 की घात है
अवकल समीकरण cosx siny dx + sinx cosy dy = 0 का हल है
वक्र कुल y2 = 4a(x + a) का अवकल समीकरण है
`("dy")/("d"x) + "y"tanx = secx` व्यापक हल है
अवकल समीकरण `("dy")/("d"x) + (2x"y")/(1 + x^2) = 1/(1 + x^2)^2` का हल है
`("dy")/("d"x) + "y"` = sinx का व्यापक हल ______ है।