हिंदी

Dydeydydx=2xex2-y का व्यापक हल है - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

`("dy")/("d"x) = 2x"e"^(x^2 - "y")` का व्यापक हल है

विकल्प

  • `"e"^(x^2 - "y")` = c

  • `"e"^-"y" + "e"^(x^2)` = c

  • `"e"^-"y" = "e"^(x^2)` + c

  • `"e"^(x^2 + "y")` = c

MCQ

उत्तर

सही उत्तर `underline("e"^-"y" = "e"^(x^2) + "c")` है।

व्याख्या:

दिया गया अवकल समीकरण `("dy")/("d"x) = 2x"e"^(x^2 - "y")` है।

⇒ `("dy")/("d"x) = 2x . "e"^(x^2) . "e"^-"y"`

⇒ `("dy")/("e"^-"y") = 2x . "e"^(x^2)  "d"x`

दोनों पक्षों का समाकलन करने पर हमें प्राप्त होता है

`int ("dy")/("e"^-"y") = int 2x . "e"^(x^2)  "d"x`

⇒ `int "e"^"y"  "dy" = int 2x . "e"^(x^2)  "d"x`

R.H.S. में x2 = t रखिए

∴ 2x dx = dt

∴ `int "e"^"y"  "dy" = int "e"^"t"  "dt"`

⇒ ey = et + c

⇒ ey = `"e"^("y"^2) + "c"`

shaalaa.com
अवकल समीकरण
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: अवकल समीकरण - प्रश्नावली [पृष्ठ १९४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
अध्याय 9 अवकल समीकरण
प्रश्नावली | Q 61 | पृष्ठ १९४

संबंधित प्रश्न

निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`dy/dx + (sec x)y = tan x (0 <= x <= pi/2)`


अवकल समीकरण `(1 - y^2)  dy/dx + yx = ay (-1 < y < 1)` का समाकलन गुणक है:


वक्रों के कुल y = Ae2x + B.e–2x के लिए अवकल समीकरण ज्ञात कीजिए।


अवकल समीकरण `"dy"/"dx" = y/x` का व्यापक हल ज्ञात कीजिए।


अवकल समीकरण `"dy"/"dx"` = yex,  x = 0, y = e में y का मान बताएं जब x = 1


अवकल समीकरण `"dy"/"dx" + y/x` = x2 को हल कीजिए।


एक तल में सभी अक्षैतिज रेखाओं का अवकल समीकरण ज्ञात कीजिए। 


अवकल समीकरण `2x * "dy"/"dx" y` = 3 का हल किस कुल को निरूपित करता है?


अवकल समीकरण `("dy"/"dx")^2 - x "dy"/"dx" + "y"` = 0 का एक हल है


निम्न में से कौन सा x और y में समघातीय फलन नहीं है।


F(x, y) = `(x^2 + y^2)/(x - y)` कोटि 1 का समघातीय फलन है।


`"dy"/"dx"` = 2y–x का हल ज्ञात कीजिए।


वह अवकल समीकरण ज्ञात कीजिए जिसका व्यापक हल y = (sin–1x)2 + Acos–1x + B है जहाँ A और B स्वेच्छ अचर हैं।


उस वक्र का समीकरण ज्ञात कीजिए जो मूल बिंदु से होकर जाता है और अवकल समीकरण `(1 + x^2) "dy"/"dx" + 2x"y"` = 4x2 को संतुष्ट करता है।


`x^2 "dy"/"dx"` = x2 + xy + y2 को हल कीजिए।


केंद्र (1, 2) वाले सभी सकेंद्री वृत्तों के कुल का अवकल समीकरण ज्ञात कीजिए।


(1 + tany)(dx – dy) + 2xdy = 0 का व्यापक हल ज्ञात कीजिए।


`("dy")/("d"x) = cos(x + "y") + sin(x + "y")` को हल कीजिए [संकेत : x + y = z रखिए]


`x ("dy")/("d"x) = "y" (log "y" – log x + 1)` को हल कीजिए।


अवकल समीकरण `("d"^2"y")/("d"x^2) + (("dy")/("d"x))^(1/4) + x^(1/5)` = 0, के कोटि और घात क्रमश: हैं


अवकल समीकरण xdy – ydx = 0 का हल निरूपित करता है एक ______


अवकल समीकरण `"y" ("dy")/("d"x) + "c"` निरूपित करता है


अवकल समीकरण `("d"^2"y")/("d"x^2) + (("dy")/("d"x))^3 + 6"y"^5` = 0 की घात है


अवकल समीकरण cosx siny dx + sinx cosy dy = 0 का हल है


वक्र कुल  y2 = 4a(x + a) का अवकल समीकरण है


`("dy")/("d"x) + "y"tanx = secx` व्यापक हल है


अवकल समीकरण `("dy")/("d"x) + (2x"y")/(1 + x^2) = 1/(1 + x^2)^2` का हल है


`("dy")/("d"x) + "y"` = sinx का व्यापक हल ______ है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×