हिंदी

Dydyyxdydx=y(logy–logx+1) को हल कीजिए। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

`x ("dy")/("d"x) = "y" (log "y" – log x + 1)` को हल कीजिए।

योग

उत्तर

दिया गया है कि: `x ("dy")/("d"x) = "y"(log "y" – log x + 1)`

⇒ `x ("dy")/("d"x) = "y"[log("y"/x) + 1]`

⇒ `("dy")/("d"x) = "y"/x[log("y"/x) + 1]`

क्योंकि, यह एक समघातीय अवकल समीकरण है।

∴ y = vx रखिए

⇒ `("dy")/("d"x) = "v" + x * "dv"/"dx"`

∴ `"v" + x * "dv"/"dx" = "vx"/x[log("vx"/x) + 1]`

⇒ `"v" + x * "dv"/"dx" = "v"[log "v" + 1]`

⇒ `x * "dv"/"dx" = "v"[log "v" + 1] - "v"`

⇒ `x * "dv"/"dx"` = v  ....[log v + 1 – 1]

⇒ `x * "dv"/"dx" = "v" * log "v"`

⇒ `"dv"/("v"log"v") = "dx"/x`

दोनों पक्षों का समाकलन करने पर हमें प्राप्त होता है

`int "dv"/("v"log"v") = int "dx"/x`

log v = t पर L.H.S. रखिए

`1/"v" "dv"` = dt

∴ `int "dt"/"t" = int "dx"/x`

`log|"t"| = log|x| + log"c"`

⇒ `log|log "v"| = log x"c"`

⇒ log v = xc

⇒ `log("y"/x)` = xc

इसलिए, वाँछित हल `log("y"/x)` = xc है।

shaalaa.com
अवकल समीकरण
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: अवकल समीकरण - प्रश्नावली [पृष्ठ १९१]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
अध्याय 9 अवकल समीकरण
प्रश्नावली | Q 33 | पृष्ठ १९१

संबंधित प्रश्न

निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए।

(x + y) dy + (x – y) dx = 0; y = 1; यदि x = 1


निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`x log x dy/dx + y = 2/x log x`


निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

(1 + x2)dy + 2xy dx = cot x dx (x ≠ 0)


निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए-

`dy/dx - 3 y cot x = sin 2x; y = 2` यदि x = `pi/2`


अवकल समीकरण x`dy/dx - y = 2x^2` का समाकलन गुणक है:


वक्रों के कुल y = Ae2x + B.e–2x के लिए अवकल समीकरण ज्ञात कीजिए।


अवकल समीकरण `"dy"/"dx"` = yex,  x = 0, y = e में y का मान बताएं जब x = 1


अवकल समीकरण `(1 + "dy"/"dx")^3 = (("d"^2y)/("d"x^2))^2` की घात है


अवकल समीकरण `[1 + ("dy"/"dx")^2]^2 = ("d"^2y)/("d"x^2)`  के क्रमशः कोटि और घात हैं


अवकल समीकरण `("dy"/"dx")^2 - x "dy"/"dx" + "y"` = 0 का एक हल है


अवकल समीकरण `x "dt"/"dx" + 2"y"` = x2 का हल है


F(x, y) = `(sqrt(x^2 + y^2) + y)/x` का घात ______ है।


अवकल समीकरण `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` को हल करने के लिए उपयुक्त प्रतिस्थापन ______ है।


अवकल समीकरण  `"dy"/"dx" = "e"^(x - y)` का व्यापक हल ______ है।


अवकल समीकरण `"dy"/"dx" + y/x` = 1 का व्यापक हल ______ है।


दीर्घ वृत्तों जिनका केंद्र मूल बिंदु पर तथा नाभियाँ x-अक्ष पर हैं को निरूपित करने वाले अवकल समीकरण की कोटि 2 है।


F(x, y) = `("y"cos("y"/x) + x)/(xcos("y"/x))` समघातीय फलन नहीं है।


अवकल समीकरण `"dy"/"dx" + "y" sec x` = tan x का व्यापक हल y(secx – tanx) = secx – tanx + x + k है।


वह अवकल समीकरण ज्ञात कीजिए जिसका व्यापक हल y = (sin–1x)2 + Acos–1x + B है जहाँ A और B स्वेच्छ अचर हैं।


y = Acos αx + Bsin αx जहाँ A और B स्वेछ अचर हैं के लिए अवकल समीकरण है


अवकल समीकरण `cosx ("dy")/("d"x) + "y"sinx` = 1 का समाकलन गुणक है।


`("dy")/("d"x) - "y"` = 1 का हल जब, y(0) = 1 है


निम्न से कौन सा अवकल समीकरण कोटि 2 का है?


`("dy")/("d"x) + "y" = "e"^-x` जब y(0) = 0  का हल है


अवकल समीकरण `("dy")/("d"x) + "y" = (1 + "y")/x` का समाकलन गुणक है


समीकरण (2y – 1)dx – (2x + 3)dy = 0 का हल है


अवकल समीकरण जिसका एक हल y = acosx + bsinx है


अवकल समीकरण `sqrt(1 + (("dy")/("d"x))^2)` = x की घात ______ है।


अवकल समीकरण `x("dy")/("d"x) + 2"y" = x^2` का हल ______ है।


`("d"x)/("dy") + "p"_1x = "Q"_1` प्रकार के अवकल समीकरण के हल को x.I.F. = `("I"."F") xx "Q"_1"dy"` द्वारा दिया जाता है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×