हिंदी

समीकरण (2y – 1)dx – (2x + 3)dy = 0 का हल है - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

समीकरण (2y – 1)dx – (2x + 3)dy = 0 का हल है

विकल्प

  • `(2x - 1)/(2"y" + 3)` = k

  • `("y" + 1)/(2x - 3)` = k

  • `(2x + 3)/(2"y" - 1)` = k

  • `(2x - 1)/(2"y" - 1)` = k

MCQ

उत्तर

सही उत्तर `underline((2x + 3)/(2"y" - 1) = "k")` है।

व्याख्या:

दिया गया अवकल समीकरण (2y – 1)dx – (2x + 3)dy = 0 है।

⇒ (2x + 3)dy = (2y – 1)dx

⇒ `("dy")/(2"y" - 1) = ("d"x)/(2x + 3)`

दोनों पक्षों का समाकलन करने पर हमें प्राप्त होता है

`int ("dy")/(2"y" - 1) = int ("d"x)/(2x + 3)`

⇒ `1/2 log|2"y" - 1| = 1/2 log |2x + 3| + log"c"`

⇒ `log|2"y" - 1| = log|2x + 3| + 2 log "c"`

⇒ `log|2"y" - 1| - log|2x + 3| = log "c"^2`

⇒ `log|(2"y" - 1)/(2x + 3)| = log "c"^2`

⇒ `(2"y" - 1)/(2x + 3) = "c"^2`

⇒ `(2x + 3)/(2"y" - 1) = 1/"c"^2`

⇒ `(2x + 3)/(2"y" - 1)` = k

जहाँ k = `1/"c"^2`

shaalaa.com
अवकल समीकरण
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: अवकल समीकरण - प्रश्नावली [पृष्ठ १९५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
अध्याय 9 अवकल समीकरण
प्रश्नावली | Q 64 | पृष्ठ १९५

संबंधित प्रश्न

निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए।

(x + y) dy + (x – y) dx = 0; y = 1; यदि x = 1


निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`x log x dy/dx + y = 2/x log x`


निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`(x + y) dy/dx = 1`


वक्रों के कुल y = Ae2x + B.e–2x के लिए अवकल समीकरण ज्ञात कीजिए।


`x^2 "dy"/"dx" - x"y" = 1 + cos("y"/x)`, x ≠ 0 तथा जब x = 1 तब y = `pi/2` है को हल कीजिए।


अवकल समीकरण `("d"^2y)/("d"x^2) + 3("dy"/"dx")^2 = x^2 log(("d"^2y)/("d"x^2))` की घात है


अवकल समीकरण `"dx"/x + "dy"/y` = 0 का हल है


अवकल समीकरण `"dy"/"dx" + y/x` = 1 का व्यापक हल ______ है।


अवकल समीकरण `("d"^2"y")/("d"x^2) - x^2 "dy"/"dx" + x"y"` = x का एक विशिष्ट हल y = x है।


दिया है कि `"dy"/"dx" = "e"^-2x` और जब x = 5 तब y = 0 है। जब y = 3 है तब x का मान ज्ञात कीजिए।


अवकल समीकरण `"dy"/"dx" + 1` = ex + y को हल कीजिए।


`"y" + "d"/("d"x) (x"y") = x(sinx + logx)` को हल कीजिए।


मूल बिंदु से गुजरने वाले वक्र का समीकरण ज्ञात कीजिए यदि इस वक्र के किसी बिंदु (x, y) पर स्पर्श रेखा की प्रवणता इस बिंदु के x निर्देशांक (भुज) तथा y निर्देशांक (कोटि) के अंतर के वर्ग के बराबर है।


बिंदु (1, 1) से गुजरने वाले उस वक्र का समीकरण ज्ञात कीजिए जिसके किसी बिंदु P (x, y) से खींची गई स्पर्श रेखा, निर्देशांक अक्षों से A और B पर इस प्रकार मिलती है कि AB का मध्य बिंदु P है।


`x ("dy")/("d"x) = "y" (log "y" – log x + 1)` को हल कीजिए।


अवकल समीकरण `(("d"^2"y")/("d"x^2))^2 + (("dy")/("d"x))^2 = xsin(("dy")/("d"x))` की घात है


अवकल समीकरण `cosx ("dy")/("d"x) + "y"sinx` = 1 का समाकलन गुणक है।


`(x"dy")/("d"x) - "y" = x^4 - 3x`  का समाकलन गुणक है:


अवकल समीकरण `(1 - x^2) ("dy")/("d"x) - x"y"` = 1 का समाकलन गुणक है


अवकल समीकरण `("d"^2"y")/("d"x^2) + (("dy")/("d"x))^3 + 6"y"^5` = 0 की घात है


`("dy")/("d"x) + "y" = "e"^-x` जब y(0) = 0  का हल है


अवकल समीकरण `("dy")/("d"x) + (1 + "y"^2)/(1 + x^2)` का हल है


अवकल समीकरण  `("dy")/("d"x) = "e"^(x^2/2) + x"y"` का व्यापक हल है


वक्र कुल  y2 = 4a(x + a) का अवकल समीकरण है


अवकल समीकरण ydx + (x + xy)dy = 0 का हल ______ है।


अवकल समीकरण coty dx = xdy का हल ______ है।


 `("dy")/("d"x) = "f"(x, "y")` जहाँ f (x, y) एक शून्य घात वाला समघातीय फलन है, को हल करने के लिए सही प्रतिस्थापन y = vx है।


`("d"x)/("dy") = "g"(x, "y")` जहाँ g (x, y) एक शून्य घात वाला समघातीय फलन है, प्रकार के अवकल समीकरण को हल करने के लिए सही प्रतिस्थापन x = vy है।


वृत्तों के कुल x2 + (y – a)2 = aको निरूपित करने वाले अवकल समीकरण की कोटि दो होगी।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×