Advertisements
Advertisements
प्रश्न
समीकरण (2y – 1)dx – (2x + 3)dy = 0 का हल है
पर्याय
`(2x - 1)/(2"y" + 3)` = k
`("y" + 1)/(2x - 3)` = k
`(2x + 3)/(2"y" - 1)` = k
`(2x - 1)/(2"y" - 1)` = k
उत्तर
सही उत्तर `underline((2x + 3)/(2"y" - 1) = "k")` है।
व्याख्या:
दिया गया अवकल समीकरण (2y – 1)dx – (2x + 3)dy = 0 है।
⇒ (2x + 3)dy = (2y – 1)dx
⇒ `("dy")/(2"y" - 1) = ("d"x)/(2x + 3)`
दोनों पक्षों का समाकलन करने पर हमें प्राप्त होता है
`int ("dy")/(2"y" - 1) = int ("d"x)/(2x + 3)`
⇒ `1/2 log|2"y" - 1| = 1/2 log |2x + 3| + log"c"`
⇒ `log|2"y" - 1| = log|2x + 3| + 2 log "c"`
⇒ `log|2"y" - 1| - log|2x + 3| = log "c"^2`
⇒ `log|(2"y" - 1)/(2x + 3)| = log "c"^2`
⇒ `(2"y" - 1)/(2x + 3) = "c"^2`
⇒ `(2x + 3)/(2"y" - 1) = 1/"c"^2`
⇒ `(2x + 3)/(2"y" - 1)` = k
जहाँ k = `1/"c"^2`
APPEARS IN
संबंधित प्रश्न
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
(1 + x2)dy + 2xy dx = cot x dx (x ≠ 0)
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`x "dy"/"dx" + y - x + xy cot x = 0 (x ≠ 0)`
निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए-
`dy/dx - 3 y cot x = sin 2x; y = 2` यदि x = `pi/2`
अवकल समीकरण x`dy/dx - y = 2x^2` का समाकलन गुणक है:
`x^2 "dy"/"dx" - x"y" = 1 + cos("y"/x)`, x ≠ 0 तथा जब x = 1 तब y = `pi/2` है को हल कीजिए।
अवकल समीकरण `("d"^2y)/("d"x^2) + 3("dy"/"dx")^2 = x^2 log(("d"^2y)/("d"x^2))` की घात है
अवकल समीकरण `[1 + ("dy"/"dx")^2]^2 = ("d"^2y)/("d"x^2)` के क्रमशः कोटि और घात हैं
निम्न में से कौन सा x और y में समघातीय फलन नहीं है।
अवकल समीकरण `"dx"/x + "dy"/y` = 0 का हल है
अवकल समीकरण tan x dx + tan y dy = 0 के विशिष्ट हल में स्वेच्छ अचरों की संख्या ______ है।
अवकल समीकरण `"dy"/"dx" + y/x` = 1 का व्यापक हल ______ है।
अवकल समीकरण `sqrt(1 + ("d"^2y)/("d"x^2)) = x + "dy"/"dx"` की घात परिभाषित नहीं है।
उस वक्र का समीकरण ज्ञात कीजिए जो मूल बिंदु से होकर जाता है और अवकल समीकरण `(1 + x^2) "dy"/"dx" + 2x"y"` = 4x2 को संतुष्ट करता है।
केंद्र (1, 2) वाले सभी सकेंद्री वृत्तों के कुल का अवकल समीकरण ज्ञात कीजिए।
`("dy")/("d"x) = cos(x + "y") + sin(x + "y")` को हल कीजिए [संकेत : x + y = z रखिए]
बिंदु (2, 1) से जाने वाले उस वक्र का समीकरण ज्ञात कीजिए जिसका किसी भी बिंदु (x, y) पर स्पर्श रेखा की प्रवणता `(x^2 + "y"^2)/(2x"y")` है।
बिंदु (1, 0) से जाने वाले उस वक्र का समीकरण ज्ञात कीजिए जिसके किसी भी बिंदु (x, y) पर स्पर्श रेखा की प्रवणता `("y" - 1)/(x^2 + x)` है।
बिंदु (1, 1) से गुजरने वाले उस वक्र का समीकरण ज्ञात कीजिए जिसके किसी बिंदु P (x, y) से खींची गई स्पर्श रेखा, निर्देशांक अक्षों से A और B पर इस प्रकार मिलती है कि AB का मध्य बिंदु P है।
अवकल समीकरण `[1 + (("dy")/("d"x))^2]^(3/2) = ("d"^2"y")/("d"x^2)` की घात है
यदि y = e–x (Acosx + Bsinx) तब y एक हल है
अवकल समीकरण `("dy")/("d"x) + "y" = (1 + "y")/x` का समाकलन गुणक है
अवकल समीकरण `("dy")/("d"x) = "e"^(x^2/2) + x"y"` का व्यापक हल है
वक्र कुल y2 = 4a(x + a) का अवकल समीकरण है
अवकल समीकरण `("dy")/("d"x) + "y"/x` = sec x का हल है
अवकल समीकरण `x("dy")/("d"x) + 2"y" = x^2` का हल ______ है।
`("dy")/("d"x) + "y"` = sinx का व्यापक हल ______ है।
`("d"x)/("dy") = "g"(x, "y")` जहाँ g (x, y) एक शून्य घात वाला समघातीय फलन है, प्रकार के अवकल समीकरण को हल करने के लिए सही प्रतिस्थापन x = vy है।
वृत्तों के कुल x2 + (y – a)2 = a2 को निरूपित करने वाले अवकल समीकरण की कोटि दो होगी।