मराठी

बिंदु (1, 0) से जाने वाले उस वक्र का समीकरण ज्ञात कीजिए जिसके किसी भी बिंदु (x, y) पर स्पर्श रेखा की प्रवणता yy-1x2+x है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

बिंदु (1, 0) से जाने वाले उस वक्र का समीकरण ज्ञात कीजिए जिसके किसी भी बिंदु (x, y) पर स्पर्श रेखा की प्रवणता `("y" - 1)/(x^2 + x)` है।

बेरीज

उत्तर

यह देखते हुए कि (x, y) पर वक्र के स्पर्शरेखा का ढलान है `("dy")/("d"x) = ("y" - 1)/(x^2 + x)`

⇒ `("dy")/("y" - 1) = ("d"x)/(x^2 + x)`

दोनों पक्षों का समाकलन करने पर हमें प्राप्त होता है

`int ("dy")/("y" - 1) = int ("d"x)/(x^2 + x)`

⇒ `int ("dy")/("y" - 1) = int ("d"x)/(x^2 + x + 1/4 - 1/4)`  ...[पूर्ण वर्ग बनाना]

⇒ `int ("dy")/("y" - 1) = int ("d"x)/((x + 1/2)^2 - (1/2)^2`

⇒ `log|"y" - 1| = 1/(2 xx 1/2) log|(x + 1/2 - 1/2)/(x + 1/2 + 1/2)|`

⇒ `log|"y" - 1| = log|x/(x + 1)| + log "c"`

⇒ `log|"y" - 1| = log|"c"(x/(x + 1))|`

∴ y – 1 = `("c"x)/(x + 1)` 

⇒ `("y" - 1)(x + 1)` = cx

क्योंकि रेखा बिंदु (1, 0) से होकर जा रही है, तो (0 – 1) (1 + 1) = c(1)

⇒ c = 2

इसलिए, वाँछित हल (y – 1)(x + 1) = 2x है।

shaalaa.com
अवकल समीकरण
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: अवकल समीकरण - प्रश्नावली [पृष्ठ १९०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
पाठ 9 अवकल समीकरण
प्रश्नावली | Q 30 | पृष्ठ १९०

संबंधित प्रश्‍न

निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`dy/dx + 3y = e^(- 2x)`


निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`x log x dy/dx + y = 2/x log x`


निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`x "dy"/"dx" + y - x + xy cot x = 0 (x ≠ 0)`


निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए-

`dy/dx + 2  y tan x = sin x`; y = 0 यदि x = `pi/4`


अवकल समीकरण `"dy"/"dx" + y/x` = x2 को हल कीजिए।


मूल बिंदु से गुजरने वाली सरल रेखाओं के कुल का अवकल समीकरण ज्ञात कीजिए।


बिंदु (1, 1) से गुजरने वाले एक ऐसे वक्र का समीकरण ज्ञात कौजिए जिसका किसी बिंदु P(x, y) से वक्र के अभिलंब की मूल बिंदु से लंबवत दूरी P से x-अक्ष की दूरी के बराबर है।


बिंदु 1,`pi/4` से जाने वाले वक् का समीकरण ज्ञात कीजिए यदि किसी बिंदु P (x, y) पर वक्र की स्पर्श रेखा की प्रवणता `"y"/x - cos^2"y"/x` है।


अवकल समीकरण `("d"^2y)/("d"x^2) + 3("dy"/"dx")^2 = x^2 log(("d"^2y)/("d"x^2))` की घात है


अवकल समीकरण `"dy"/"dx" (x log x) + y` = 2logx का समाकलन गुणक है


परवलयों y2 = 4ax के कुल को निरूपित करने वाले अवकल समीकरण की कोटि ______ है।


अवकल समीकरण `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` को हल करने के लिए उपयुक्त प्रतिस्थापन ______ है।


अवकल समीकरण  `"dy"/"dx" = "e"^(x - y)` का व्यापक हल ______ है।


जब `("e"^(-2sqrt(x))/sqrt(x) - y/sqrt(x))("d"x)/("d"y) = 1(x ≠ 0)` को `"dy"/"dx" + "P"y` = Q, के रूप में लिखते हैं तब P = ______ है।


अवकल समीकरण `"dy"/"dx" - y` = cos x is ex का समाकलन गुणक ex है।


दिया है कि `"dy"/"dx" = "e"^-2x` और जब x = 5 तब y = 0 है। जब y = 3 है तब x का मान ज्ञात कीजिए।


`x^2 "dy"/"dx"` = x2 + xy + y2 को हल कीजिए।


(x + y) (dx – dy) = dx + dy को हल कीजिए। [संकेत : dx और dy को पृथक करने के पश्चात x + y = z रखिए ]


`"y" + "d"/("d"x) (x"y") = x(sinx + logx)` को हल कीजिए।


अवकल समीकरण `cosx ("dy")/("d"x) + "y"sinx` = 1 का समाकलन गुणक है।


y = Ax + A3 } द्वारा निरूपित वक्रों के कुल के अवकल समीकरण की घात है


अवकल समीकरण `("dy")/("d"x) + "y" tanx - secx` = 0 का समाकलन गुणक है


अवकल समीकरण `("dy")/("d"x) + (1 + "y"^2)/(1 + x^2)` का हल है


वक्र कुल y = Ax + A3 उस अवकल समीकरण के तदनुरूपी (संगत) है जिसकी कोटि है


अवकल समीकरण  `("dy")/("d"x) = "e"^(x - "y") + x^2 "e"^-"y"` का हल है


`("d"x)/("dy") + "p"_1x = "Q"_1` प्रकार के अवकल समीकरण के हल को x.I.F. = `("I"."F") xx "Q"_1"dy"` द्वारा दिया जाता है।


 `("dy")/("d"x) = "f"(x, "y")` जहाँ f (x, y) एक शून्य घात वाला समघातीय फलन है, को हल करने के लिए सही प्रतिस्थापन y = vx है।


`("dy")/("d"x) = ("y"/x)^(1/3)` का हल  `"y"^(2/3) - x^(2/3)` = c है।


एक तल में सभी अक्षतिज (रेखाएँ जो क्षैतिज नहीं हैं) सरल रेखाओं का अवकल

समीकरण `("d"^2x)/("dy"^2)` = 0 है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×