मराठी

Yddyy+ddx(xy)=x(sinx+logx) को हल कीजिए। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

`"y" + "d"/("d"x) (x"y") = x(sinx + logx)` को हल कीजिए।

बेरीज

उत्तर

दिया गया अवकल समीकरण `"y" + "d"/("d"x) (x"y") = x(sinx + logx)` है।

⇒ `"y" + x * ("dy")/("d"x) + "y" = x(sinx + logx)`

⇒ `x ("dy")/("d"x) = x(sinx + logx) - 2"y"`

⇒ `("dy")/("d"x) = (sinx + logx) - (2"y")/x`

⇒ `("dy")/("d"x) + 2x "y" = (sinx + logx)`

यहाँ, P = `2/x` और Q = `(sinx + log x)`

समाकलन गुणक I.F. = `"e"^(int"Pdx")`

= `"e"^(int 2/x "d"x)`

= `"e"^(2logx)`

= `"e"^(log x^2)`

= x2

∴ हल `"y" xx "I"."F". = int "Q"."I"."F".  "d"x + "c"` है।

⇒ `"y" . x^2 = int (sinx + logx)x^2  "d"x + "c"`  ....(1)

Let I = `int (sinx + logx)x^2  "d"x`

= `int_"I"x^2 sinx  "d"x + int_"iII"^(x^2) log x  "d"x`

= `[x^2 . int sinx  "d"x - int("D"(x^2) . int sinx  "d"x)"d"x] + [logx . intsinx  "d"x - int ("D"(logx) . intx^2  "d"x)"d"x]`

= `[x^2(-cosx) -2 int - x cosx  "d"x] + [logx . x^3/3 - int 1/x * x^3/3  "d"x]`

= `[-x^2 cosx + 2(xsinx - int1 .sinx  "d"x)] + [x^3/3 log x - 1/3 int x^2  "d"x]`

= `-x^2cosx + 2x sinx + 2cosx + x^3/3 log x - 1/9 x^3`

अब समीकरण (1) से हमें प्राप्त होता है

`"y" . x^2 = -x^2 cosx + 2x sinx + 2cosx + x^3/3 log x - 1/9 x^3 + "c"`

∴ y = `-cosx + (2sinx)/x + (2cosx)/x^2 + (xlogx)/3 - 1/9 x + "c" .x^-2`

इसलिए, वाँछित हल `-cosx + (2sinx)/x + (2cosx)/x^2 + (xlogx)/3 - 1/9 x + "c" .x^-2` है।

shaalaa.com
अवकल समीकरण
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: अवकल समीकरण - प्रश्नावली [पृष्ठ १९०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
पाठ 9 अवकल समीकरण
प्रश्नावली | Q 25 | पृष्ठ १९०

संबंधित प्रश्‍न

निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`dy/dx + y/x + x^2`


निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`dy/dx + (sec x)y = tan x (0 <= x <= pi/2)`


निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`x log x dy/dx + y = 2/x log x`


निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए-

`dy/dx + 2  y tan x = sin x`; y = 0 यदि x = `pi/4`


निम्नलिखित अवकल समीकरण में से कोटि एवं घात (यदि परिभाषित हो) ज्ञात कीजिए।

`(d^2y)/dx^2 + 5x(dy/dx)^2 - 6y = log x`


बताइए कि समीकरण xdy – ydx = `sqrt(x^2 + "y"^2)  "d"x` किस प्रकार का अवकल समीकरण है तथा इसे हल कीजिए। 


अवकल समीकरण `[1 + ("dy"/"dx")^2]^2 = ("d"^2y)/("d"x^2)`  के क्रमशः कोटि और घात हैं


अवकल समीकरण `("dy"/"dx")^2 - x "dy"/"dx" + "y"` = 0 का एक हल है


F(x, y) = `("y"cos("y"/x) + x)/(xcos("y"/x))` समघातीय फलन नहीं है।


F(x, y) = `(x^2 + y^2)/(x - y)` कोटि 1 का समघातीय फलन है।


अवकल समीकरण `(x^2 - 1) "dy"/"dx" + 2x"y" = 1/(x^2 - 1)` को हल कीजिए।


अवकल समीकरण `"dy"/"dx" + 2x"y"` = y को हल कीजिए।


(x + y) (dx – dy) = dx + dy को हल कीजिए। [संकेत : dx और dy को पृथक करने के पश्चात x + y = z रखिए ]


`("dy")/("d"x) -3"y" = sin2x` का व्यापक हल ज्ञात कीजिए।


बिंदु (1, 1) से गुजरने वाले उस वक्र का समीकरण ज्ञात कीजिए जिसके किसी बिंदु P (x, y) से खींची गई स्पर्श रेखा, निर्देशांक अक्षों से A और B पर इस प्रकार मिलती है कि AB का मध्य बिंदु P है।


अवकल समीकरण xdy – ydx = 0 का हल निरूपित करता है एक ______


y = Ax + A3 } द्वारा निरूपित वक्रों के कुल के अवकल समीकरण की घात है


`(x"dy")/("d"x) - "y" = x^4 - 3x`  का समाकलन गुणक है:


`("dy")/("d"x) - "y"` = 1 का हल जब, y(0) = 1 है


अवकल समीकरण `(1 - x^2) ("dy")/("d"x) - x"y"` = 1 का समाकलन गुणक है


tan–1 x + tan–1 y = c किस अवकल समीकरण का व्यापक हल है?


`("dy")/("d"x) + "y" = "e"^-x` जब y(0) = 0  का हल है


वक्र कुल x2 + y2 – 2ay = 0, जहाँ a एक स्वेच्छ अचर है का अवकल समीकरण है


`("dy")/("d"x) = 2x"e"^(x^2 - "y")` का व्यापक हल है


अवकल समीकरण  `("dy")/("d"x) = "e"^(x^2/2) + x"y"` का व्यापक हल है


`("dy")/("d"x) + "y"/(xlogx) = 1/x` इस ______ प्रकार का समीकरण है।


`(1 + x^2) ("dy")/("d"x) + 2x"y" - 4x^2` = 0 का हल ______ है।


`("dy")/("d"x) + "y"` = sinx का व्यापक हल ______ है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×