मराठी

निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए- dydx+(secx)y=tanx(0≤x≤π2) - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`dy/dx + (sec x)y = tan x (0 <= x <= pi/2)`

बेरीज

उत्तर

यह `dy/dx Py = Q`  के रूप का रैखिक अवकल समीकरण है। 

यहाँ P = sec x तथा Q = tan x

∴ I.F. = `e^(int P dx) = e^(int sec x  dx)`

`= e^(log (sec x + tan x))` = (sec x + tan x)

अतः अवकल समीकरण का हल

∴ `y xx I.F. = int Q xx I.F. dx + C`

⇒ `y(sec x + tan x) = int tan x xx (sec x + tan x)dx + C`

⇒ `y(sec x + tan x) = int (tan sec x + tan^2 x) dx + C`

`⇒ y (sec x + tan x) = int tan sec x dx + int sec^2 x  dx - int 1 dx + C`

⇒  y(sec x + tan x) = sec x + tan x - x + C

shaalaa.com
अवकल समीकरण
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: अवकल समीकरण - प्रश्नावली 9.6 [पृष्ठ ४२९]

APPEARS IN

एनसीईआरटी Mathematics - Part 1 and 2 [Hindi] Class 12
पाठ 9 अवकल समीकरण
प्रश्नावली 9.6 | Q 4. | पृष्ठ ४२९

संबंधित प्रश्‍न

निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

y dx + (x – y2)dy = 0


निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`(x + 3y^2) dy/dx = y, (y > 0)`


निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए-

`dy/dx - 3 y cot x = sin 2x; y = 2` यदि x = `pi/2`


अवकल समीकरण `"dy"/"dx" + y/x` = x2 को हल कीजिए।


उस वक्र का समीकरण ज्ञात कीजिए जिसके मूल बिंदु के अतिरिक्त किसी अन्य बिंदु पर स्पर्श रेखा की प्रवणता `"y" + "y"/x` है।


बिंदु (1, 1) से गुजरने वाले एक ऐसे वक्र का समीकरण ज्ञात कौजिए जिसका किसी बिंदु P(x, y) से वक्र के अभिलंब की मूल बिंदु से लंबवत दूरी P से x-अक्ष की दूरी के बराबर है।


अवकल समीकरण `("d"^2y)/("d"x^2) + 3("dy"/"dx")^2 = x^2 log(("d"^2y)/("d"x^2))` की घात है


अवकल समीकरण `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` को हल करने के लिए उपयुक्त प्रतिस्थापन ______ है।


जब `("e"^(-2sqrt(x))/sqrt(x) - y/sqrt(x))("d"x)/("d"y) = 1(x ≠ 0)` को `"dy"/"dx" + "P"y` = Q, के रूप में लिखते हैं तब P = ______ है।


`"dy"/"dx" + "y"` = 5 एक `"dy"/"dx" + "Py"` = Q प्रकार का अवकल समीकरण है परंतु इसे चर पृथक्करणीय विधि से भी हल कर सकते हैं।


दिया है कि `"dy"/"dx" = "e"^-2x` और जब x = 5 तब y = 0 है। जब y = 3 है तब x का मान ज्ञात कीजिए।


अवकल समीकरण `(x^2 - 1) "dy"/"dx" + 2x"y" = 1/(x^2 - 1)` को हल कीजिए।


अवकल समीकरण  `"dy"/"dx"` = 1 + x + y2 + xy2,  को हल कीजिए जब y = 0, x = 0


`(x + 2"y"^3)  "dy"/"dx"` = y का व्यापक हल ज्ञात कीजिए।


`x^2 "dy"/"dx"` = x2 + xy + y2 को हल कीजिए।


`"y" + "d"/("d"x) (x"y") = x(sinx + logx)` को हल कीजिए।


बिंदु (1, 1) से गुजरने वाले उस वक्र का समीकरण ज्ञात कीजिए जिसके किसी बिंदु P (x, y) से खींची गई स्पर्श रेखा, निर्देशांक अक्षों से A और B पर इस प्रकार मिलती है कि AB का मध्य बिंदु P है।


अवकल समीकरण `"y" ("dy")/("d"x) + "c"` निरूपित करता है


y = aemx+ be–mx निम्न में से किस अवकल समीकरण को संतुष्ट करता है


अवकल समीकरण cosx siny dx + sinx cosy dy = 0 का हल है


वह वक्र जिसके लिए किसी बिंदु पर स्पर्श रेखा की प्रवणता उस बिंदु के x-अक्ष (भुज) तथा y-अक्ष (कोटि) के अनुपात के बराबर है वह है


समीकरण (2y – 1)dx – (2x + 3)dy = 0 का हल है


अवकल समीकरण जिसका एक हल y = acosx + bsinx है


वक्र कुल  y2 = 4a(x + a) का अवकल समीकरण है


`(1 + x^2) ("dy")/("d"x) + 2x"y" - 4x^2` = 0 का हल ______ है।


`("dy")/("d"x) + "y"` = sinx का व्यापक हल ______ है।


अवकल समीकरण `("d"x)/("dy") + "P"_1x = "Q"_1` के समाकलन गुणक को `"e"^(int "P"_1"dy")` से लिखा जाता है।


द्वितीय कोटि के अवकल समीकरण के विशिष्ट हल में स्वेच्छ अचरों की संख्या ं

दो होती है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×