मराठी

निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए- cos2xdydx+y=tanx(0≤x<π2) - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`cos^2 x dy/dx + y = tan x (0 <= x < pi/2)`

बेरीज

उत्तर

दिया गया समीकरण है,

`cos^2 x dy/dx + y = tan x`

⇒ `dy/dx + (sec^2 x) y = tan x sec^2 x`

जो कि इस प्रकार का एक रैखिक समीकरण है,

`dy/dx + Py = Q`

यहाँ P = sec2 x and Q =  tan sec2 x

∴ `I.F. = e^(intsec^2 x  dx) = e^(tan x)`

∴ हल है,  `y. (I.F.) = int Q. (I.F.) dx + C`

⇒ `y.e^(tan x) = int tan x sec^2 x e^(tan x)  dx + C = I + C`      ...(1)

अब, `I = int tan x sec^2 xe^(tan x)  dx`

tan x = t रखने पर

⇒ sec2  x dx = dt

∴ `I = int t. e^t  dt = t. e^t - int (1) e^t  dt`        ....[भागों द्वारा एकीकृत]

`= te^t - e^t = e^t (t - 1)`

`= e^(tan x) (tan x - 1)`

∴ (1) से `y.e^(tan x) = e^(tan x) (tan x - 1) + C`

⇒ `y = (tan x - 1) + Ce^(-tan x),` जो कि आवश्यक हल है।

shaalaa.com
अवकल समीकरण
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: अवकल समीकरण - प्रश्नावली 9.6 [पृष्ठ ४२९]

APPEARS IN

एनसीईआरटी Mathematics - Part 1 and 2 [Hindi] Class 12
पाठ 9 अवकल समीकरण
प्रश्नावली 9.6 | Q 5. | पृष्ठ ४२९

संबंधित प्रश्‍न

निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`dy/dx + y/x + x^2`


एक तल में सभी अक्षैतिज रेखाओं का अवकल समीकरण ज्ञात कीजिए। 


बिंदु 1,`pi/4` से जाने वाले वक् का समीकरण ज्ञात कीजिए यदि किसी बिंदु P (x, y) पर वक्र की स्पर्श रेखा की प्रवणता `"y"/x - cos^2"y"/x` है।


`x^2 "dy"/"dx" - x"y" = 1 + cos("y"/x)`, x ≠ 0 तथा जब x = 1 तब y = `pi/2` है को हल कीजिए।


बताइए कि समीकरण xdy – ydx = `sqrt(x^2 + "y"^2)  "d"x` किस प्रकार का अवकल समीकरण है तथा इसे हल कीजिए। 


अवकल समीकरण `("d"^2y)/("d"x^2) + 3("dy"/"dx")^2 = x^2 log(("d"^2y)/("d"x^2))` की घात है


अवकल समीकरण `[1 + ("dy"/"dx")^2]^2 = ("d"^2y)/("d"x^2)`  के क्रमशः कोटि और घात हैं


निम्न में से कौन सा x और y में समघातीय फलन नहीं है।


अवकल समीकरण `"dx"/x + "dy"/y` = 0 का हल है


अवकल समीकरण  `"dy"/"dx" = "e"^(x - y)` का व्यापक हल ______ है।


अवकल समीकरण  x(1 + y2)dx + y(1 + x2)dy = 0 का व्यापक हल (1 + x2)(1 + y2) = k है।


दिया है कि `"dy"/"dx" = "e"^-2x` और जब x = 5 तब y = 0 है। जब y = 3 है तब x का मान ज्ञात कीजिए।


अवकल समीकरण `"dy"/"dx" + 1` = ex + y को हल कीजिए।


`2("y" + 3) - x"y" "dy"/"dx"` = 0 को हल कीजिए जबकि y (1) = – 2 दिया है।


केंद्र (1, 2) वाले सभी सकेंद्री वृत्तों के कुल का अवकल समीकरण ज्ञात कीजिए।


बिंदु (1, 1) से गुजरने वाले उस वक्र का समीकरण ज्ञात कीजिए जिसके किसी बिंदु P (x, y) से खींची गई स्पर्श रेखा, निर्देशांक अक्षों से A और B पर इस प्रकार मिलती है कि AB का मध्य बिंदु P है।


अवकल समीकरण `[1 + (("dy")/("d"x))^2]^(3/2) = ("d"^2"y")/("d"x^2)` की घात है


यदि y = e–x (Acosx + Bsinx) तब y एक हल है


अवकल समीकरण tany sec2 x dx + tanx sec2 ydy = 0 का हल है।


ex cosy dx – ex siny dy = 0 का व्यापक हल है


वक्र कुल x2 + y2 – 2ay = 0, जहाँ a एक स्वेच्छ अचर है का अवकल समीकरण है


वह वक्र जिसके लिए किसी बिंदु पर स्पर्श रेखा की प्रवणता उस बिंदु के x-अक्ष (भुज) तथा y-अक्ष (कोटि) के अनुपात के बराबर है वह है


अवकल समीकरण जिसका एक हल y = acosx + bsinx है


अवकल समीकरण `("dy")/("d"x) + "y"/x` = sec x का हल है


`("dy")/("d"x) + "y"/(xlogx) = 1/x` इस ______ प्रकार का समीकरण है।


अवकल समीकरण `x("dy")/("d"x) + 2"y" = x^2` का हल ______ है।


`("d"x)/("dy") = "g"(x, "y")` जहाँ g (x, y) एक शून्य घात वाला समघातीय फलन है, प्रकार के अवकल समीकरण को हल करने के लिए सही प्रतिस्थापन x = vy है।


`("dy")/("d"x) = ("y"/x)^(1/3)` का हल  `"y"^(2/3) - x^(2/3)` = c है।


एक तल में सभी अक्षतिज (रेखाएँ जो क्षैतिज नहीं हैं) सरल रेखाओं का अवकल

समीकरण `("d"^2x)/("dy"^2)` = 0 है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×