Advertisements
Advertisements
प्रश्न
वह वक्र जिसके लिए किसी बिंदु पर स्पर्श रेखा की प्रवणता उस बिंदु के x-अक्ष (भुज) तथा y-अक्ष (कोटि) के अनुपात के बराबर है वह है
पर्याय
दीर्घ वृत्त
परवलय
वृत्त
समकोणीय अतिपरवलय
उत्तर
सही उत्तर समकोणीय अतिपरवलय है।
व्याख्या:
क्योंकि, वक्र की स्पर्श रेखा का ढलान = x : y
∴ `("dy")/("d"x) = x/"y"`
⇒ ydy = xdx
दोनों पक्षों का समाकलन करने पर हमें प्राप्त होता है
`int "y" "dy" = int x "d"x`
⇒ `"y"^2/2 = x^2/2 + "c"`
⇒ y2 = x2 + 2c
⇒ y2 – x2 = 2c = k जो आयताकार अतिपरवलय है।
APPEARS IN
संबंधित प्रश्न
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`dy/dx + y/x + x^2`
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`dy/dx + (sec x)y = tan x (0 <= x <= pi/2)`
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`x "dy"/"dx" + y - x + xy cot x = 0 (x ≠ 0)`
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
y dx + (x – y2)dy = 0
अवकल समीकरण `"dy"/"dx"` = yex, x = 0, y = e में y का मान बताएं जब x = 1
बिंदु (1, 1) से गुजरने वाले एक ऐसे वक्र का समीकरण ज्ञात कौजिए जिसका किसी बिंदु P(x, y) से वक्र के अभिलंब की मूल बिंदु से लंबवत दूरी P से x-अक्ष की दूरी के बराबर है।
अवकल समीकरण `"dy"/"dx" (x log x) + y` = 2logx का समाकलन गुणक है
निम्न में से कौन सा x और y में समघातीय फलन नहीं है।
अवकल समीकरण `x "dt"/"dx" + 2"y"` = x2 का हल है
अवकल समीकरण `("dy"/"dx")^2 + (("d"^2y)/("d"x^2))^2` = 0 की घात ______ हैं।
अवकल समीकरण tan x dx + tan y dy = 0 के विशिष्ट हल में स्वेच्छ अचरों की संख्या ______ है।
F(x, y) = `(sqrt(x^2 + y^2) + y)/x` का घात ______ है।
अवकल समीकरण `sqrt(1 + ("d"^2y)/("d"x^2)) = x + "dy"/"dx"` की घात परिभाषित नहीं है।
F(x, y) = `(x^2 + y^2)/(x - y)` कोटि 1 का समघातीय फलन है।
दिया है कि `"dy"/"dx" = "e"^-2x` और जब x = 5 तब y = 0 है। जब y = 3 है तब x का मान ज्ञात कीजिए।
`"dy"/"dx" + "a"y` = emx का व्यापक हल ज्ञात कीजिए।
ydx – xdy = x2 ydx को हल कीजिए।
यदि y (x) समीकरण `((2 + sinx)/(1 + "y"))"dy"/"dx"` = – cosx का हल है और y (0) = 1, है तब `"y"(pi/2)` का मान ज्ञात कीजिए।
अवकल समीकरण `(1 + y^2) + (x - "e"^(tan - 1y)) "dy"/"dx"` = 0 का व्यापक हल ज्ञात कीजिए।
y = Ax + A3 } द्वारा निरूपित वक्रों के कुल के अवकल समीकरण की घात है
`("dy")/("d"x) + "y" = "e"^-x` जब y(0) = 0 का हल है
अवकल समीकरण cosx siny dx + sinx cosy dy = 0 का हल है
वक्र कुल x2 + y2 – 2ay = 0, जहाँ a एक स्वेच्छ अचर है का अवकल समीकरण है
`("dy")/("d"x) = 2x"e"^(x^2 - "y")` का व्यापक हल है
अवकल समीकरण ydx + (x + xy)dy = 0 का हल ______ है।
`("d"x)/("dy") + "p"_1x = "Q"_1` प्रकार के अवकल समीकरण के हल को x.I.F. = `("I"."F") xx "Q"_1"dy"` द्वारा दिया जाता है।
`("dy")/("d"x) = "f"(x, "y")` जहाँ f (x, y) एक शून्य घात वाला समघातीय फलन है, को हल करने के लिए सही प्रतिस्थापन y = vx है।
वृत्तों के कुल x2 + (y – a)2 = a2 को निरूपित करने वाले अवकल समीकरण की कोटि दो होगी।
`x("dy")/("d"x) = "y" + x tan "y"/x` का हल `sin("y"/x)` = cx है।