मराठी

Dydyyxdydx=y+xtan yx का हल ysin(yx) = cx है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

`x("dy")/("d"x) = "y" + x tan  "y"/x` का हल `sin("y"/x)` = cx है।

पर्याय

  • सत्य

  • असत्य

MCQ
चूक किंवा बरोबर

उत्तर

यह कथन सत्य है।

व्याख्या:

दिया गया अवकल समीकरण `x("dy")/("d"x) = "y" + x tan ("y"/x)` है।

`x ("dy")/("d"x) = -x tan ("y"/x)` = y

⇒ `("dy")/("d"x) - tan ("y"/x) = "y"/x`

⇒ `("dy")/("d"x) = "y"/x + tan ("y"/x)`

y = vx रखिए

⇒ `("dy")/("d"x) = "v" + x "dv"/"dx"`

⇒ `"v" + x * "dv"/"dx" = "vx"/x + tan ("vx"/x)`

⇒ `"v" + x "dv"/"dx" = "v" + tan "v"`

⇒ `x "dv"/"dx" = tan "v"`

⇒ `"dv"/tan"v" = ("d"x)/x`

⇒ `cot "v" "dv" = ("d"x)/x`

दोनों पक्षों का समाकलन करने पर हमें प्राप्त होता है

`int cot "v" "dv" = int ("d"x)/x`

⇒ `log sin "v" = log x + log "c"`

⇒ `log sin "v" - log x = log "c"`

⇒ `log sin  "y"/x = log x"c"`

∴ `sin  "y"/x` = xc

shaalaa.com
अवकल समीकरण
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: अवकल समीकरण - प्रश्नावली [पृष्ठ १९८]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
पाठ 9 अवकल समीकरण
प्रश्नावली | Q 77. (x) | पृष्ठ १९८

संबंधित प्रश्‍न

निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`dy/dx + (sec x)y = tan x (0 <= x <= pi/2)`


निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`cos^2 x dy/dx + y = tan x (0 <= x < pi/2)`


निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए-

`dy/dx + 2  y tan x = sin x`; y = 0 यदि x = `pi/4`


वक्रों के कुल y = Ae2x + B.e–2x के लिए अवकल समीकरण ज्ञात कीजिए।


बिंदु (1, 1) से गुजरने वाले एक ऐसे वक्र का समीकरण ज्ञात कौजिए जिसका किसी बिंदु P(x, y) से वक्र के अभिलंब की मूल बिंदु से लंबवत दूरी P से x-अक्ष की दूरी के बराबर है।


बिंदु 1,`pi/4` से जाने वाले वक् का समीकरण ज्ञात कीजिए यदि किसी बिंदु P (x, y) पर वक्र की स्पर्श रेखा की प्रवणता `"y"/x - cos^2"y"/x` है।


बताइए कि समीकरण xdy – ydx = `sqrt(x^2 + "y"^2)  "d"x` किस प्रकार का अवकल समीकरण है तथा इसे हल कीजिए। 


निम्न में से कौन सा x और y में समघातीय फलन नहीं है।


अवकल समीकरण `"dx"/x + "dy"/y` = 0 का हल है


अवकल समीकरण `("dy"/"dx")^2 + (("d"^2y)/("d"x^2))^2` = 0 की घात ______ हैं।


F(x, y) = `(sqrt(x^2 + y^2) + y)/x` का घात ______ है।


अवकल समीकरण `"dy"/"dx" + "y" sec x` = tan x का व्यापक हल y(secx – tanx) = secx – tanx + x + k है।


`"dy"/"dx"` = 2y–x का हल ज्ञात कीजिए।


ydx – xdy = x2 ydx को हल कीजिए।


`(x + 2"y"^3)  "dy"/"dx"` = y का व्यापक हल ज्ञात कीजिए।


`2("y" + 3) - x"y" "dy"/"dx"` = 0 को हल कीजिए जबकि y (1) = – 2 दिया है।


मूल बिंदु से गुजरने वाले वक्र का समीकरण ज्ञात कीजिए यदि इस वक्र के किसी बिंदु (x, y) पर स्पर्श रेखा की प्रवणता इस बिंदु के x निर्देशांक (भुज) तथा y निर्देशांक (कोटि) के अंतर के वर्ग के बराबर है।


अवकल समीकरण xdy – ydx = 0 का हल निरूपित करता है एक ______


अवकल समीकरण tany sec2 x dx + tanx sec2 ydy = 0 का हल है।


y = Ax + A3 } द्वारा निरूपित वक्रों के कुल के अवकल समीकरण की घात है


`(x"dy")/("d"x) - "y" = x^4 - 3x`  का समाकलन गुणक है:


अवकल समीकरण `("dy")/("d"x) + "y" tanx - secx` = 0 का समाकलन गुणक है


अवकल समीकरण `("dy")/("d"x) + (1 + "y"^2)/(1 + x^2)` का हल है


वक्र कुल y = Ax + A3 उस अवकल समीकरण के तदनुरूपी (संगत) है जिसकी कोटि है


`("dy")/("d"x) = 2x"e"^(x^2 - "y")` का व्यापक हल है


अवकल समीकरण जिसका एक हल y = acosx + bsinx है


`("dy")/("d"x) + "y"/(xlogx) = 1/x` इस ______ प्रकार का समीकरण है।


 `("dy")/("d"x) = "f"(x, "y")` जहाँ f (x, y) एक शून्य घात वाला समघातीय फलन है, को हल करने के लिए सही प्रतिस्थापन y = vx है।


द्वितीय कोटि के अवकल समीकरण के विशिष्ट हल में स्वेच्छ अचरों की संख्या ं

दो होती है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×