Advertisements
Advertisements
प्रश्न
अवकल समीकरण `("dy")/("d"x) + (1 + "y"^2)/(1 + x^2)` का हल है
पर्याय
y = tan–1x
y – x = k (1 + xy)
x = tan–1y
tan (xy) = k
उत्तर
सही उत्तर y – x = k (1 + xy) है।
व्याख्या:
दिया गया अवकल समीकरण `("dy")/("d"x) + (1 + "y"^2)/(1 + x^2)`
⇒ `("dy")/(1 + "y"^2) = ("d"x)/(1 + x^2)` है।
दोनों पक्षों का समाकलन करने पर हमें प्राप्त होता है
`int ("dy")/(1 + "y"^2) = int ("d"x)/(1 + x^2)`
⇒ tan–1y = tan–1x + c
⇒ tan–1y – tan–1x = c
⇒ `tan^-1(("y" - x)/(1 + x"y"))` = c
⇒ `("y" - x)/(1 + x"y")` = tan c
⇒ `(("y" - x)/(1 + x"y"))` = k ....[k = tan c]
⇒ y – x = k(1 + xy)
APPEARS IN
संबंधित प्रश्न
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`dy/dx + y/x + x^2`
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`cos^2 x dy/dx + y = tan x (0 <= x < pi/2)`
अवकल समीकरण `(1 + "dy"/"dx")^3 = (("d"^2y)/("d"x^2))^2` की घात है
दी गई त्रिज्या a के सभी वृत्तों के अवकल समीकरण की कोटि है
अवकल समीकरण `"dy"/"dx" (x log x) + y` = 2logx का समाकलन गुणक है
अवकल समीकरण `x "dt"/"dx" + 2"y"` = x2 का हल है
अवकल समीकरण `x "dy"/"dx" - y` = sinx का समाकलन गणक ______ है।
अवकल समीकरण `"dy"/"dx" + y/x` = 1 का व्यापक हल ______ है।
`"dy"/"dx" + "y"` = 5 एक `"dy"/"dx" + "Py"` = Q प्रकार का अवकल समीकरण है परंतु इसे चर पृथक्करणीय विधि से भी हल कर सकते हैं।
अवकल समीकरण `"dy"/"dx" + "y" sec x` = tan x का व्यापक हल y(secx – tanx) = secx – tanx + x + k है।
अवकल समीकरण `"dy"/"dx" + 1` = ex + y को हल कीजिए।
यदि y (x) समीकरण `((2 + sinx)/(1 + "y"))"dy"/"dx"` = – cosx का हल है और y (0) = 1, है तब `"y"(pi/2)` का मान ज्ञात कीजिए।
(x + y) (dx – dy) = dx + dy को हल कीजिए। [संकेत : dx और dy को पृथक करने के पश्चात x + y = z रखिए ]
`("dy")/("d"x) -3"y" = sin2x` का व्यापक हल ज्ञात कीजिए।
`x ("dy")/("d"x) = "y" (log "y" – log x + 1)` को हल कीजिए।
tan–1 x + tan–1 y = c किस अवकल समीकरण का व्यापक हल है?
ex cosy dx – ex siny dy = 0 का व्यापक हल है
`("dy")/("d"x) + "y" = "e"^-x` जब y(0) = 0 का हल है
अवकल समीकरण `("dy")/("d"x) + "y" tanx - secx` = 0 का समाकलन गुणक है
y = aemx+ be–mx निम्न में से किस अवकल समीकरण को संतुष्ट करता है
अवकल समीकरण cosx siny dx + sinx cosy dy = 0 का हल है
`("dy")/("d"x) = 2x"e"^(x^2 - "y")` का व्यापक हल है
वह वक्र जिसके लिए किसी बिंदु पर स्पर्श रेखा की प्रवणता उस बिंदु के x-अक्ष (भुज) तथा y-अक्ष (कोटि) के अनुपात के बराबर है वह है
अवकल समीकरण `("dy")/("d"x) + (2x"y")/(1 + x^2) = 1/(1 + x^2)^2` का हल है
अवकल समीकरण `sqrt(1 + (("dy")/("d"x))^2)` = x की घात ______ है।
`("dy")/("d"x) + "y"/(xlogx) = 1/x` इस ______ प्रकार का समीकरण है।
`("d"x)/("d"x) + "P"_1x = "Q"_1` प्रकार के अवकल समीकरण का व्यापक हल ______ है।
`("dy")/("d"x) + "y" = (1 + "y")/x` का समाकलन गुणक ______ है।
`("dy")/("d"x) = "f"(x, "y")` जहाँ f (x, y) एक शून्य घात वाला समघातीय फलन है, को हल करने के लिए सही प्रतिस्थापन y = vx है।
द्वितीय कोटि के अवकल समीकरण के विशिष्ट हल में स्वेच्छ अचरों की संख्या ं
दो होती है।