मराठी

Dydydydx-3y=sin2x का व्यापक हल ज्ञात कीजिए। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

`("dy")/("d"x) -3"y" = sin2x` का व्यापक हल ज्ञात कीजिए।

बेरीज

उत्तर

दिया गया समीकरण `("dy")/("d"x) -3"y" = sin2x` है।

यहाँ, P = –3 और Q = sin2x

∴ समाकलन गुणक I.F. = `"e"^(int "Pdx")`

= `"e"^(int-3"d"x)`

= `"e"^(-3x)`

∴ हल `"y" xx "I"."F". = int "Q" . "I"."F". "d"x + "c"` है।

⇒ `"y" . "e"^(-3x) = int sin2x . "e"^(-3x) "d"x + "c"`

मान लीजिए I = `int sin_"I" 2x . "e"_"II"^(-3x) "d"x`

⇒ I = `sin 2x . int "e"^(-3x)"d"x - int("D"(sin 2x) . int"e"^(-3x) "d"x)"d"x`

⇒ I = `sin 2x . "e"^(-3x)/(-3) - int 2 cos2x . "e"^(-3x)/(-3) "d"x`

⇒ I = `"e"^(-3x)/(-3) sin2x + 2/3 int cos_"I" 2x . "e"_"II"^(-3x) "d"x`

⇒ I = `"e"^(-3x)/(-3) sin 2x + 2/3 [cos 2x . int "e"^(-3x) "d"x - int["D" cos2x . int "e"^(-3x) "d"x]"d"x]`

⇒ I = `"e"^(-3x)/(-3) sin 2x + 2/3 [cos 2x . "e"^(-3x)/(-3) - 2sin 2x . "e"^(-3x)/(-3)]"d"x`

⇒ I = `"e"^(-3x)/(-3) sin 2x - 2/9 cos2x . "e"^(-3x) - 4/9 int sin 2x. "e"^(-3x) "d"x`

⇒ `"e"^(-3x)/(-3) sin2x - 2/9 "e"^(-3x) cos 2x - 4/9 "I"`

⇒ `"I" + 4/9 "I" = "e"^(-3x)/(-3) sin 2x - 2/9 "e"^(-3x) cos 2x`

⇒ `13/9 "I" = - 1/9 [3"e"^(-3x) sin2x + 2"e"^(-3x) cos2x]`

⇒ I = `- 1/13 "e"^(-3x) [3 sin 2x + 2 cos2x]`

∴ समीकरण `"y"  "e"^(-3x) = - 1/13 "e"^(-3x) [3 sin 2x + 2 cos 2x] + "c"` हो जाता है।

∴ y = `- 1/13 [3 sin 2x + 2 cos 2x] + "c" . "e"^(3x)`

इसलिए, वाँछित हल y = `-[(3sin2x + 2cos2x)/13] + "c" . "e"^(3x)` है।

shaalaa.com
अवकल समीकरण
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: अवकल समीकरण - प्रश्नावली [पृष्ठ १९०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
पाठ 9 अवकल समीकरण
प्रश्नावली | Q 28 | पृष्ठ १९०

संबंधित प्रश्‍न

निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`x "dy"/"dx" + y - x + xy cot x = 0 (x ≠ 0)`


निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

y dx + (x – y2)dy = 0


निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`(x + 3y^2) dy/dx = y, (y > 0)`


निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए-

`dy/dx - 3 y cot x = sin 2x; y = 2` यदि x = `pi/2`


अवकल समीकरण `(1 - y^2)  dy/dx + yx = ay (-1 < y < 1)` का समाकलन गुणक है:


निम्नलिखित अवकल समीकरण में से कोटि एवं घात (यदि परिभाषित हो) ज्ञात कीजिए।

`(d^2y)/dx^2 + 5x(dy/dx)^2 - 6y = log x`


अवकल समीकरण `("d"^2y)/("d"x^2) + 3("dy"/"dx")^2 = x^2 log(("d"^2y)/("d"x^2))` की घात है


निम्न में से कौन सा x और y में समघातीय फलन नहीं है।


F(x, y) = `(sqrt(x^2 + y^2) + y)/x` का घात ______ है।


दीर्घ वृत्तों जिनका केंद्र मूल बिंदु पर तथा नाभियाँ x-अक्ष पर हैं को निरूपित करने वाले अवकल समीकरण की कोटि 2 है।


अवकल समीकरण `"dy"/"dx" - y` = cos x is ex का समाकलन गुणक ex है।


अवकल समीकरण `"dy"/"dx" + "y" sec x` = tan x का व्यापक हल y(secx – tanx) = secx – tanx + x + k है।


अवकल समीकरण `"dy"/"dx" + 2x"y"` = y को हल कीजिए।


यदि `(1 + "t")"dy"/"dt" - "ty"` = 1 का  y(t) एक हल है और y(0) = – 1 है तो दिखाइए कि y(1) = `-1/2`


उन सभी वृत्तों के समीकरण का अवकल समीकरण ज्ञात कीजिए जो मूल बिंदु से होकर जाते हैं तथा केंद्र y-अक्ष पर स्थित है।


अवकल समीकरण `("d"^2"y")/("d"x^2) + (("dy")/("d"x))^(1/4) + x^(1/5)` = 0, के कोटि और घात क्रमश: हैं


`("dy")/("d"x) - "y"` = 1 का हल जब, y(0) = 1 है


tan–1 x + tan–1 y = c किस अवकल समीकरण का व्यापक हल है?


अवकल समीकरण `("d"^2"y")/("d"x^2) + (("dy")/("d"x))^3 + 6"y"^5` = 0 की घात है


वक्र कुल x2 + y2 – 2ay = 0, जहाँ a एक स्वेच्छ अचर है का अवकल समीकरण है


`("dy")/("d"x) + "y" = "e"^-x`, y(0) = 0 का हल है


वक्र कुल  y2 = 4a(x + a) का अवकल समीकरण है


`("dy")/("d"x) + "y"tanx = secx` व्यापक हल है


अवकल समीकरण `("dy")/("d"x) + "y"/x` = sec x का हल है


`("d"x)/("d"x) + "P"_1x = "Q"_1` प्रकार के अवकल समीकरण का व्यापक हल ______ है।


अवकल समीकरण ydx + (x + xy)dy = 0 का हल ______ है।


अवकल समीकरण `("dy")/("d"x) = (x + 2"y")/x` का हल x + y = kx2 है।


`x("dy")/("d"x) = "y" + x tan  "y"/x` का हल `sin("y"/x)` = cx है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×