Advertisements
Advertisements
प्रश्न
`("dy")/("d"x) -3"y" = sin2x` का व्यापक हल ज्ञात कीजिए।
उत्तर
दिया गया समीकरण `("dy")/("d"x) -3"y" = sin2x` है।
यहाँ, P = –3 और Q = sin2x
∴ समाकलन गुणक I.F. = `"e"^(int "Pdx")`
= `"e"^(int-3"d"x)`
= `"e"^(-3x)`
∴ हल `"y" xx "I"."F". = int "Q" . "I"."F". "d"x + "c"` है।
⇒ `"y" . "e"^(-3x) = int sin2x . "e"^(-3x) "d"x + "c"`
मान लीजिए I = `int sin_"I" 2x . "e"_"II"^(-3x) "d"x`
⇒ I = `sin 2x . int "e"^(-3x)"d"x - int("D"(sin 2x) . int"e"^(-3x) "d"x)"d"x`
⇒ I = `sin 2x . "e"^(-3x)/(-3) - int 2 cos2x . "e"^(-3x)/(-3) "d"x`
⇒ I = `"e"^(-3x)/(-3) sin2x + 2/3 int cos_"I" 2x . "e"_"II"^(-3x) "d"x`
⇒ I = `"e"^(-3x)/(-3) sin 2x + 2/3 [cos 2x . int "e"^(-3x) "d"x - int["D" cos2x . int "e"^(-3x) "d"x]"d"x]`
⇒ I = `"e"^(-3x)/(-3) sin 2x + 2/3 [cos 2x . "e"^(-3x)/(-3) - 2sin 2x . "e"^(-3x)/(-3)]"d"x`
⇒ I = `"e"^(-3x)/(-3) sin 2x - 2/9 cos2x . "e"^(-3x) - 4/9 int sin 2x. "e"^(-3x) "d"x`
⇒ `"e"^(-3x)/(-3) sin2x - 2/9 "e"^(-3x) cos 2x - 4/9 "I"`
⇒ `"I" + 4/9 "I" = "e"^(-3x)/(-3) sin 2x - 2/9 "e"^(-3x) cos 2x`
⇒ `13/9 "I" = - 1/9 [3"e"^(-3x) sin2x + 2"e"^(-3x) cos2x]`
⇒ I = `- 1/13 "e"^(-3x) [3 sin 2x + 2 cos2x]`
∴ समीकरण `"y" "e"^(-3x) = - 1/13 "e"^(-3x) [3 sin 2x + 2 cos 2x] + "c"` हो जाता है।
∴ y = `- 1/13 [3 sin 2x + 2 cos 2x] + "c" . "e"^(3x)`
इसलिए, वाँछित हल y = `-[(3sin2x + 2cos2x)/13] + "c" . "e"^(3x)` है।
APPEARS IN
संबंधित प्रश्न
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`x "dy"/"dx" + y - x + xy cot x = 0 (x ≠ 0)`
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
y dx + (x – y2)dy = 0
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`(x + 3y^2) dy/dx = y, (y > 0)`
निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए-
`dy/dx - 3 y cot x = sin 2x; y = 2` यदि x = `pi/2`
अवकल समीकरण `(1 - y^2) dy/dx + yx = ay (-1 < y < 1)` का समाकलन गुणक है:
निम्नलिखित अवकल समीकरण में से कोटि एवं घात (यदि परिभाषित हो) ज्ञात कीजिए।
`(d^2y)/dx^2 + 5x(dy/dx)^2 - 6y = log x`
अवकल समीकरण `("d"^2y)/("d"x^2) + 3("dy"/"dx")^2 = x^2 log(("d"^2y)/("d"x^2))` की घात है
निम्न में से कौन सा x और y में समघातीय फलन नहीं है।
F(x, y) = `(sqrt(x^2 + y^2) + y)/x` का घात ______ है।
दीर्घ वृत्तों जिनका केंद्र मूल बिंदु पर तथा नाभियाँ x-अक्ष पर हैं को निरूपित करने वाले अवकल समीकरण की कोटि 2 है।
अवकल समीकरण `"dy"/"dx" - y` = cos x is ex का समाकलन गुणक ex है।
अवकल समीकरण `"dy"/"dx" + "y" sec x` = tan x का व्यापक हल y(secx – tanx) = secx – tanx + x + k है।
अवकल समीकरण `"dy"/"dx" + 2x"y"` = y को हल कीजिए।
यदि `(1 + "t")"dy"/"dt" - "ty"` = 1 का y(t) एक हल है और y(0) = – 1 है तो दिखाइए कि y(1) = `-1/2`
उन सभी वृत्तों के समीकरण का अवकल समीकरण ज्ञात कीजिए जो मूल बिंदु से होकर जाते हैं तथा केंद्र y-अक्ष पर स्थित है।
अवकल समीकरण `("d"^2"y")/("d"x^2) + (("dy")/("d"x))^(1/4) + x^(1/5)` = 0, के कोटि और घात क्रमश: हैं
`("dy")/("d"x) - "y"` = 1 का हल जब, y(0) = 1 है
tan–1 x + tan–1 y = c किस अवकल समीकरण का व्यापक हल है?
अवकल समीकरण `("d"^2"y")/("d"x^2) + (("dy")/("d"x))^3 + 6"y"^5` = 0 की घात है
वक्र कुल x2 + y2 – 2ay = 0, जहाँ a एक स्वेच्छ अचर है का अवकल समीकरण है
`("dy")/("d"x) + "y" = "e"^-x`, y(0) = 0 का हल है
वक्र कुल y2 = 4a(x + a) का अवकल समीकरण है
`("dy")/("d"x) + "y"tanx = secx` व्यापक हल है
अवकल समीकरण `("dy")/("d"x) + "y"/x` = sec x का हल है
`("d"x)/("d"x) + "P"_1x = "Q"_1` प्रकार के अवकल समीकरण का व्यापक हल ______ है।
अवकल समीकरण ydx + (x + xy)dy = 0 का हल ______ है।
अवकल समीकरण `("dy")/("d"x) = (x + 2"y")/x` का हल x + y = kx2 है।
`x("dy")/("d"x) = "y" + x tan "y"/x` का हल `sin("y"/x)` = cx है।