मराठी

यदि tdydtty(1+t)dydt-ty = 1 का y(t) एक हल है और y(0) = – 1 है तो दिखाइए कि y(1) = -12 - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

यदि `(1 + "t")"dy"/"dt" - "ty"` = 1 का  y(t) एक हल है और y(0) = – 1 है तो दिखाइए कि y(1) = `-1/2`

बेरीज

उत्तर

दिया गया समीकरण `(1 + "t")"dy"/"dt" - "ty"` = 1 है।

⇒ `"dy"/"dt" - ("t"/(1 + "t")) "y" = 1/(1 + "t")`

यहाँ, P = `(-"t")/(1 + "t")` और Q = `1/(1 + "t")`

∴ समाकलन गुणक I.F. = `"e"^(int"pdt")`

= `"e"^(int (-1)/(1 + "t") "dt")`

= `"e"^(-int (1 + "t" - 1)/(1 + "t") "dt")`

= `"e"^(-int(1 - 1/(1 + "t"))"dt")`

= `"e"^(-["t" - log(1 + "t")])`

= `"e"^(-"t" + log(1 + "t"))`

= `"e"^(-"t") * "e"^(log(1 + "t"))`

∴ I.F. = `"e"^(-"t") * (1 + "t")`

दिए गए अवकल समीकरण का वाँछित हल

y . I. F. = `int "Q" . "I"."F". "dt" + "c"`

⇒ `"y" * "e"^-"t" (1 + "t") = int 1/((1 + "t")) * "e"^-"t" * (1 + "t")  "dt" + "c"`

⇒ `"y" * "e"^-"t" (1 + "t") = int "e"^-"t"  "dt" + "c"`

⇒ `"y" * "e"^-"t" (1 + "t") = - "e"^-"t" + "c"`

t = 0 और y = –1  ....[∵ y(0) = –1] रखिए

⇒ `-1 * "e"^0 * 1 = -"e"^0 + "c"`

⇒ –1 = –1 + c

⇒ c = 0

तो समीकरण बन जाता है

`"ye"^-"t" (1 + "t") = -"e"^-"t"`

अब t = 1 रखिए

∴ `"y" * "e"^-1 (1 + 1) = -"e"^-1`

⇒ 2y = –1

⇒ y = `- 1/2`

इसलिए y(1) = `-1/2` सत्यापित है।

shaalaa.com
अवकल समीकरण
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: अवकल समीकरण - प्रश्नावली [पृष्ठ १८९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
पाठ 9 अवकल समीकरण
प्रश्नावली | Q 12 | पृष्ठ १८९

संबंधित प्रश्‍न

निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए।

(x + y) dy + (x – y) dx = 0; y = 1; यदि x = 1


निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`dy/dx + 3y = e^(- 2x)`


निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`cos^2 x dy/dx + y = tan x (0 <= x < pi/2)`


अवकल समीकरण `"dy"/"dx" = y/x` का व्यापक हल ज्ञात कीजिए।


अवकल समीकरण `"dy"/"dx" + y/x` = x2 को हल कीजिए।


एक तल में सभी अक्षैतिज रेखाओं का अवकल समीकरण ज्ञात कीजिए। 


अवकल समीकरण `"dy"/"dx" (x log x) + y` = 2logx का समाकलन गुणक है


अवकल समीकरण `("dy"/"dx")^2 - x "dy"/"dx" + "y"` = 0 का एक हल है


निम्न में से कौन सा x और y में समघातीय फलन नहीं है।


वक्रों के कुल y = A sinx + B cosx को निरूपित करने वाला अवकल समीकरण ______ है।


दीर्घ वृत्तों जिनका केंद्र मूल बिंदु पर तथा नाभियाँ x-अक्ष पर हैं को निरूपित करने वाले अवकल समीकरण की कोटि 2 है।


F(x, y) = `("y"cos("y"/x) + x)/(xcos("y"/x))` समघातीय फलन नहीं है।


अवकल समीकरण  x(1 + y2)dx + y(1 + x2)dy = 0 का व्यापक हल (1 + x2)(1 + y2) = k है।


अवकल समीकरण  `"dy"/"dx"` = 1 + x + y2 + xy2,  को हल कीजिए जब y = 0, x = 0


वह अवकल समीकरण ज्ञात कीजिए जिसका व्यापक हल y = (sin–1x)2 + Acos–1x + B है जहाँ A और B स्वेच्छ अचर हैं।


`x^2 "dy"/"dx"` = x2 + xy + y2 को हल कीजिए।


यदि y = e–x (Acosx + Bsinx) तब y एक हल है


`("dy")/("d"x) + "y" = "e"^-x` जब y(0) = 0  का हल है


y = aemx+ be–mx निम्न में से किस अवकल समीकरण को संतुष्ट करता है


`x ("dy")/("d"x) + "y"` = ex का हल है


समीकरण (2y – 1)dx – (2x + 3)dy = 0 का हल है


अवकल समीकरण जिसका एक हल y = acosx + bsinx है


अवकल समीकरण `sqrt(1 + (("dy")/("d"x))^2)` = x की घात ______ है।


`("dy")/("d"x) + "y"/(xlogx) = 1/x` इस ______ प्रकार का समीकरण है।


`(1 + x^2) ("dy")/("d"x) + 2x"y" - 4x^2` = 0 का हल ______ है।


`("dy")/("d"x) + "y"` = sinx का व्यापक हल ______ है।


वृत्तों के कुल x2 + (y – a)2 = aको निरूपित करने वाले अवकल समीकरण की कोटि दो होगी।


वक्रों के कुल y = ex (Acosx + Bsinx)  को निरूपित करने वाला अवकल समीकरण `("d"^2"y")/("d"x^2) - 2 ("dy")/("d"x) + 2"y"` = 0  है।


एक तल में सभी अक्षतिज (रेखाएँ जो क्षैतिज नहीं हैं) सरल रेखाओं का अवकल

समीकरण `("d"^2x)/("dy"^2)` = 0 है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×