Advertisements
Advertisements
प्रश्न
यदि `(1 + "t")"dy"/"dt" - "ty"` = 1 का y(t) एक हल है और y(0) = – 1 है तो दिखाइए कि y(1) = `-1/2`
उत्तर
दिया गया समीकरण `(1 + "t")"dy"/"dt" - "ty"` = 1 है।
⇒ `"dy"/"dt" - ("t"/(1 + "t")) "y" = 1/(1 + "t")`
यहाँ, P = `(-"t")/(1 + "t")` और Q = `1/(1 + "t")`
∴ समाकलन गुणक I.F. = `"e"^(int"pdt")`
= `"e"^(int (-1)/(1 + "t") "dt")`
= `"e"^(-int (1 + "t" - 1)/(1 + "t") "dt")`
= `"e"^(-int(1 - 1/(1 + "t"))"dt")`
= `"e"^(-["t" - log(1 + "t")])`
= `"e"^(-"t" + log(1 + "t"))`
= `"e"^(-"t") * "e"^(log(1 + "t"))`
∴ I.F. = `"e"^(-"t") * (1 + "t")`
दिए गए अवकल समीकरण का वाँछित हल
y . I. F. = `int "Q" . "I"."F". "dt" + "c"`
⇒ `"y" * "e"^-"t" (1 + "t") = int 1/((1 + "t")) * "e"^-"t" * (1 + "t") "dt" + "c"`
⇒ `"y" * "e"^-"t" (1 + "t") = int "e"^-"t" "dt" + "c"`
⇒ `"y" * "e"^-"t" (1 + "t") = - "e"^-"t" + "c"`
t = 0 और y = –1 ....[∵ y(0) = –1] रखिए
⇒ `-1 * "e"^0 * 1 = -"e"^0 + "c"`
⇒ –1 = –1 + c
⇒ c = 0
तो समीकरण बन जाता है
`"ye"^-"t" (1 + "t") = -"e"^-"t"`
अब t = 1 रखिए
∴ `"y" * "e"^-1 (1 + 1) = -"e"^-1`
⇒ 2y = –1
⇒ y = `- 1/2`
इसलिए y(1) = `-1/2` सत्यापित है।
APPEARS IN
संबंधित प्रश्न
निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए।
(x + y) dy + (x – y) dx = 0; y = 1; यदि x = 1
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`dy/dx + 3y = e^(- 2x)`
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`cos^2 x dy/dx + y = tan x (0 <= x < pi/2)`
अवकल समीकरण `"dy"/"dx" = y/x` का व्यापक हल ज्ञात कीजिए।
अवकल समीकरण `"dy"/"dx" + y/x` = x2 को हल कीजिए।
एक तल में सभी अक्षैतिज रेखाओं का अवकल समीकरण ज्ञात कीजिए।
अवकल समीकरण `"dy"/"dx" (x log x) + y` = 2logx का समाकलन गुणक है
अवकल समीकरण `("dy"/"dx")^2 - x "dy"/"dx" + "y"` = 0 का एक हल है
निम्न में से कौन सा x और y में समघातीय फलन नहीं है।
वक्रों के कुल y = A sinx + B cosx को निरूपित करने वाला अवकल समीकरण ______ है।
दीर्घ वृत्तों जिनका केंद्र मूल बिंदु पर तथा नाभियाँ x-अक्ष पर हैं को निरूपित करने वाले अवकल समीकरण की कोटि 2 है।
F(x, y) = `("y"cos("y"/x) + x)/(xcos("y"/x))` समघातीय फलन नहीं है।
अवकल समीकरण x(1 + y2)dx + y(1 + x2)dy = 0 का व्यापक हल (1 + x2)(1 + y2) = k है।
अवकल समीकरण `"dy"/"dx"` = 1 + x + y2 + xy2, को हल कीजिए जब y = 0, x = 0
वह अवकल समीकरण ज्ञात कीजिए जिसका व्यापक हल y = (sin–1x)2 + Acos–1x + B है जहाँ A और B स्वेच्छ अचर हैं।
`x^2 "dy"/"dx"` = x2 + xy + y2 को हल कीजिए।
यदि y = e–x (Acosx + Bsinx) तब y एक हल है
`("dy")/("d"x) + "y" = "e"^-x` जब y(0) = 0 का हल है
y = aemx+ be–mx निम्न में से किस अवकल समीकरण को संतुष्ट करता है
`x ("dy")/("d"x) + "y"` = ex का हल है
समीकरण (2y – 1)dx – (2x + 3)dy = 0 का हल है
अवकल समीकरण जिसका एक हल y = acosx + bsinx है
अवकल समीकरण `sqrt(1 + (("dy")/("d"x))^2)` = x की घात ______ है।
`("dy")/("d"x) + "y"/(xlogx) = 1/x` इस ______ प्रकार का समीकरण है।
`(1 + x^2) ("dy")/("d"x) + 2x"y" - 4x^2` = 0 का हल ______ है।
`("dy")/("d"x) + "y"` = sinx का व्यापक हल ______ है।
वृत्तों के कुल x2 + (y – a)2 = a2 को निरूपित करने वाले अवकल समीकरण की कोटि दो होगी।
वक्रों के कुल y = ex (Acosx + Bsinx) को निरूपित करने वाला अवकल समीकरण `("d"^2"y")/("d"x^2) - 2 ("dy")/("d"x) + 2"y"` = 0 है।
एक तल में सभी अक्षतिज (रेखाएँ जो क्षैतिज नहीं हैं) सरल रेखाओं का अवकल
समीकरण `("d"^2x)/("dy"^2)` = 0 है।