Advertisements
Advertisements
प्रश्न
`x^2 "dy"/"dx"` = x2 + xy + y2 को हल कीजिए।
उत्तर
दिया गया समीकरण `x^2 "dy"/"dx"` = x2 + xy + y2 है।
⇒ `"dy"/"dx" = (x^2 + x"y" + "y"^2)/x^2`
y = vx रखें ......[∵ यह एक समघातीय अवकल समीकरण है]
∴ `"dy"/"dx" = "v" + x * "dv"/"dx"`
∴ `"v" + x * "dv"/"dx" = (x^2 + "v"x^2 + "v"^2x^2)/x^2`
⇒ `"v" + x * "dv"/"dx" = (x^2(1 + "v" + "v"^2))/x^2`
⇒ `"v" + x * "dv"/"dx" = 1 + "v" + "v"^2`
⇒ `x * "dv"/"dx" = 1 + "v" + "v"^2 - "v"`
⇒ `x * "dv"/"dx" = 1 + "v"^2`
⇒ `"dv"/(1 + "v"^2) = "dx"/x`
दोनों पक्षों का समाकलन करने पर हमें प्राप्त होता है
`int "dv"/(1 + "v"^2) = int "dx"/x`
⇒ tan–1v = log x + c
⇒ `tan^-1 ("y"/x)` = log x + c
अत: वाँछित हल `tan^-1 ("y"/x)` = log |x| + c है।
APPEARS IN
संबंधित प्रश्न
निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए-
`dy/dx - 3 y cot x = sin 2x; y = 2` यदि x = `pi/2`
वक्रों के कुल y = Ae2x + B.e–2x के लिए अवकल समीकरण ज्ञात कीजिए।
अवकल समीकरण `"dy"/"dx" = y/x` का व्यापक हल ज्ञात कीजिए।
उस वक्र का समीकरण ज्ञात कीजिए जिसके मूल बिंदु के अतिरिक्त किसी अन्य बिंदु पर स्पर्श रेखा की प्रवणता `"y" + "y"/x` है।
बिंदु 1,`pi/4` से जाने वाले वक् का समीकरण ज्ञात कीजिए यदि किसी बिंदु P (x, y) पर वक्र की स्पर्श रेखा की प्रवणता `"y"/x - cos^2"y"/x` है।
अवकल समीकरण `[1 + ("dy"/"dx")^2]^2 = ("d"^2y)/("d"x^2)` के क्रमशः कोटि और घात हैं
परवलयों y2 = 4ax के कुल को निरूपित करने वाले अवकल समीकरण की कोटि ______ है।
अवकल समीकरण `("dy"/"dx")^2 + (("d"^2y)/("d"x^2))^2` = 0 की घात ______ हैं।
अवकल समीकरण `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` को हल करने के लिए उपयुक्त प्रतिस्थापन ______ है।
दीर्घ वृत्तों जिनका केंद्र मूल बिंदु पर तथा नाभियाँ x-अक्ष पर हैं को निरूपित करने वाले अवकल समीकरण की कोटि 2 है।
अवकल समीकरण `"dy"/"dx" - y` = cos x is ex का समाकलन गुणक ex है।
अवकल समीकरण x(1 + y2)dx + y(1 + x2)dy = 0 का व्यापक हल (1 + x2)(1 + y2) = k है।
एक तल में सभी रेखाएँ जो ऊर्ध्वाधर नहीं हैं के लिए अवकल समीकरण ज्ञात कीजिए।
अवकल समीकरण `(x^2 - 1) "dy"/"dx" + 2x"y" = 1/(x^2 - 1)` को हल कीजिए।
ydx – xdy = x2 ydx को हल कीजिए।
`2("y" + 3) - x"y" "dy"/"dx"` = 0 को हल कीजिए जबकि y (1) = – 2 दिया है।
अवकल समीकरण (1 + y2) tan–1xdx + 2y(1 + x2) dy = 0 को हल कीजिए।
`x ("dy")/("d"x) = "y" (log "y" – log x + 1)` को हल कीजिए।
अवकल समीकरण `("d"^2"y")/("d"x^2) + (("dy")/("d"x))^(1/4) + x^(1/5)` = 0, के कोटि और घात क्रमश: हैं
tan–1 x + tan–1 y = c किस अवकल समीकरण का व्यापक हल है?
`("dy")/("d"x) + "y" = "e"^-x`, y(0) = 0 का हल है
`("dy")/("d"x) + "y"tanx = secx` व्यापक हल है
अवकल समीकरण `("dy")/("d"x) + (2x"y")/(1 + x^2) = 1/(1 + x^2)^2` का हल है
अवकल समीकरण `sqrt(1 + (("dy")/("d"x))^2)` = x की घात ______ है।
`("dy")/("d"x) + "y"` = sinx का व्यापक हल ______ है।
वक्रों के कुल y = ex (Acosx + Bsinx) को निरूपित करने वाला अवकल समीकरण `("d"^2"y")/("d"x^2) - 2 ("dy")/("d"x) + 2"y"` = 0 है।
`x("dy")/("d"x) = "y" + x tan "y"/x` का हल `sin("y"/x)` = cx है।