मराठी

अवकल समीकरण dydydydx+2xy1+x2=1(1+x2)2 का हल है - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

अवकल समीकरण `("dy")/("d"x) + (2x"y")/(1 + x^2) = 1/(1 + x^2)^2` का हल है

पर्याय

  • y(1 + x2) = c + tan–1x

  • `y/(1 + x^2) = "c" + tan^-1x`

  • y log(1 + x2) = c + tan–1x

  • y(1 + x2) = c + sin–1x

MCQ

उत्तर

सही उत्तर y(1 + x2) = c + tan–1x है।

व्याख्या:

दिया गया अवकल समीकरण `("dy")/("d"x) + (2x"y")/(1 + x^2) = 1/(1 + x^2)^2`  है।

क्योंकि, यह एक रैखिक अवकल समीकरण है।

P = `(2x)/(1 + x^2)` और Q = `1/(1 + x^2)^2`

समाकलन गुणक I.F. = `"e"^(int "Pdx")`

= `"e"^(int (2x)/(1 + x^2) "d"x)`

= `"e"^(log(1 + x^2))`

= `(1 + x^2)`

∴ हल `"y" xx "I"."F". = int "Q" xx "I"."F".  "d"x + "c"` है।

⇒ `"y"(1 + x^2) = int 1/(1 + x^2)^2 xx (1 + x^2)"d"x + "c"`

⇒ `"y"(1 + x^2) = int 1/((1 + x^2)) "d"x + "c"`

⇒ `"y"(1 + x^2) = tan^-1x + "c"`.

shaalaa.com
अवकल समीकरण
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: अवकल समीकरण - प्रश्नावली [पृष्ठ १९६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
पाठ 9 अवकल समीकरण
प्रश्नावली | Q 75 | पृष्ठ १९६

संबंधित प्रश्‍न

निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`dy/dx + (sec x)y = tan x (0 <= x <= pi/2)`


निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए-

`dy/dx + 2  y tan x = sin x`; y = 0 यदि x = `pi/4`


`x^2 "dy"/"dx" - x"y" = 1 + cos("y"/x)`, x ≠ 0 तथा जब x = 1 तब y = `pi/2` है को हल कीजिए।


अवकल समीकरण `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` को हल करने के लिए उपयुक्त प्रतिस्थापन ______ है।


F(x, y) = `("y"cos("y"/x) + x)/(xcos("y"/x))` समघातीय फलन नहीं है।


अवकल समीकरण `("d"^2"y")/("d"x^2) - x^2 "dy"/"dx" + x"y"` = x का एक विशिष्ट हल y = x है।


अवकल समीकरण `(x^2 - 1) "dy"/"dx" + 2x"y" = 1/(x^2 - 1)` को हल कीजिए।


ydx – xdy = x2 ydx को हल कीजिए।


उन सभी वृत्तों के समीकरण का अवकल समीकरण ज्ञात कीजिए जो मूल बिंदु से होकर जाते हैं तथा केंद्र y-अक्ष पर स्थित है।


y2dx + (x2 – xy + y2) dy = 0 का व्यापक हल ज्ञात कीजिए।


`2("y" + 3) - x"y" "dy"/"dx"` = 0 को हल कीजिए जबकि y (1) = – 2 दिया है।


Ax2 + By2 = 1 से A और B को विलुप्त करके अवकल समीकरण बनाइए।


`x ("dy")/("d"x) = "y" (log "y" – log x + 1)` को हल कीजिए।


अवकल समीकरण `("d"^2"y")/("d"x^2) + (("dy")/("d"x))^(1/4) + x^(1/5)` = 0, के कोटि और घात क्रमश: हैं


`(x"dy")/("d"x) - "y" = x^4 - 3x`  का समाकलन गुणक है:


`("dy")/("d"x) - "y"` = 1 का हल जब, y(0) = 1 है


ex cosy dx – ex siny dy = 0 का व्यापक हल है


अवकल समीकरण `("d"^2"y")/("d"x^2) + (("dy")/("d"x))^3 + 6"y"^5` = 0 की घात है


`("dy")/("d"x) + "y" = "e"^-x` जब y(0) = 0  का हल है


अवकल समीकरण `("dy")/("d"x) + "y" = (1 + "y")/x` का समाकलन गुणक है


y = aemx+ be–mx निम्न में से किस अवकल समीकरण को संतुष्ट करता है


अवकल समीकरण  `("dy")/("d"x) = "e"^(x^2/2) + x"y"` का व्यापक हल है


अवकल समीकरण जिसका एक हल y = acosx + bsinx है


अवकल समीकरण  `("dy")/("d"x) = "e"^(x - "y") + x^2 "e"^-"y"` का हल है


`("dy")/("d"x) + "y"` = sinx का व्यापक हल ______ है।


`("dy")/("d"x) + "y" = (1 + "y")/x` का समाकलन गुणक ______ है।


`("d"x)/("dy") = "g"(x, "y")` जहाँ g (x, y) एक शून्य घात वाला समघातीय फलन है, प्रकार के अवकल समीकरण को हल करने के लिए सही प्रतिस्थापन x = vy है।


वक्रों के कुल y = ex (Acosx + Bsinx)  को निरूपित करने वाला अवकल समीकरण `("d"^2"y")/("d"x^2) - 2 ("dy")/("d"x) + 2"y"` = 0  है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×