Advertisements
Advertisements
प्रश्न
`("dy")/("d"x) + "y"` = sinx का व्यापक हल ______ है।
उत्तर
`("dy")/("d"x) + "y"` = sinx का व्यापक हल `underline("y" = ((sinx - cosx)/2) + "c"."e"^-x)` है।
व्याख्या:
दिया गया अवकल समीकरण `("dy")/("d"x) + "y"` = sinx
क्योंकि, यह एक रैखिक अवकल समीकरण है।
∴ P = 1 और Q = sinx
समाकलन गुणक I.F. = `"e"^(int"Pdx")`
= `"e"^(int1."d"x)`
= ex
∴ हल `"y" xx "i"."F". = int "Q" xx "I"."F". "D"x + "C"` है।
⇒ `"y" . "e"^x = int sin x . "e"6x "d"x + "c"` ....(1)
मान लीजिए I = `int sin_"I"x . "e"_"II"^x "d"x`
I = `sin x . int "e"^x "d"x - int ("D"(sinx) . int"e"^x "d"x)"d"x`
I = `sinx . "e"^x - int cos_"I"x . "e"_"II"^x "d"x`
I = `sinx . "e"^x - [cosx . int "e"^x "d"x - int ("D"(cosx) int"e"^x "d"x)"d"x]`
I = `sin x . "e"6x - [cosx . "e"^x - int - sin x . "e"^x "d"x]`
I = `sin x . "e"^x - cos x . "e"^x - int sin x . "e"^x "d"x`
I = `sin x . "e"^x - cos x . "e"^x - "I"`
⇒ I + I = `"e"^x (sin x - cos x)`
⇒ 2I = `"e"^x (sinx - cosx)`
∴ I = `"e"^x/2 (sinx - cosx)`
समीकरण (1) से हम प्राप्त करते हैं।
`"y" . "e"^x = "e"^x/2 (sinx - cosx) + "c"`
y = `((sinx - cosx)/2) + "c" . "e"^-x`
APPEARS IN
संबंधित प्रश्न
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`dy/dx + (sec x)y = tan x (0 <= x <= pi/2)`
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`xdy/dx + 2y = x^2 log x`
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`(x + y) dy/dx = 1`
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`(x + 3y^2) dy/dx = y, (y > 0)`
अवकल समीकरण `(1 - y^2) dy/dx + yx = ay (-1 < y < 1)` का समाकलन गुणक है:
`x^2 "dy"/"dx" - x"y" = 1 + cos("y"/x)`, x ≠ 0 तथा जब x = 1 तब y = `pi/2` है को हल कीजिए।
अवकल समीकरण `("d"^2y)/("d"x^2) + 3("dy"/"dx")^2 = x^2 log(("d"^2y)/("d"x^2))` की घात है
अवकल समीकरण `2x * "dy"/"dx" y` = 3 का हल किस कुल को निरूपित करता है?
अवकल समीकरण `"dy"/"dx" = "e"^(x - y)` का व्यापक हल ______ है।
दीर्घ वृत्तों जिनका केंद्र मूल बिंदु पर तथा नाभियाँ x-अक्ष पर हैं को निरूपित करने वाले अवकल समीकरण की कोटि 2 है।
एक तल में सभी रेखाएँ जो ऊर्ध्वाधर नहीं हैं के लिए अवकल समीकरण ज्ञात कीजिए।
अवकल समीकरण `"dy"/"dx"` = 1 + x + y2 + xy2, को हल कीजिए जब y = 0, x = 0
(x + y) (dx – dy) = dx + dy को हल कीजिए। [संकेत : dx और dy को पृथक करने के पश्चात x + y = z रखिए ]
`"y" + "d"/("d"x) (x"y") = x(sinx + logx)` को हल कीजिए।
अवकल समीकरण tany sec2 x dx + tanx sec2 ydy = 0 का हल है।
अवकल समीकरण `("dy")/("d"x) + (1 + "y"^2)/(1 + x^2)` का हल है
`x ("dy")/("d"x) + "y"` = ex का हल है
वक्र कुल x2 + y2 – 2ay = 0, जहाँ a एक स्वेच्छ अचर है का अवकल समीकरण है
वह वक्र जिसके लिए किसी बिंदु पर स्पर्श रेखा की प्रवणता उस बिंदु के x-अक्ष (भुज) तथा y-अक्ष (कोटि) के अनुपात के बराबर है वह है
अवकल समीकरण `("dy")/("d"x) = "e"^(x^2/2) + x"y"` का व्यापक हल है
अवकल समीकरण `(("d"^3"y")/("d"x^3))^2 - 3 ("d"^2"y")/("d"x^2) + 2(("dy")/("d"x))^4` = y4 की कोटि तथा घात क्रमश: है
अवकल समीकरण (ex + 1) ydy = (y + 1) exdx का व्यापाक हल है
अवकल समीकरण `("dy")/("d"x) + (2x"y")/(1 + x^2) = 1/(1 + x^2)^2` का हल है
कोटि तीन के अवकल समीकरण के व्यापक हल में स्वेच्छ अचरों की संख्या ______ है।
`("d"x)/("d"x) + "P"_1x = "Q"_1` प्रकार के अवकल समीकरण का व्यापक हल ______ है।
`("d"x)/("dy") = "g"(x, "y")` जहाँ g (x, y) एक शून्य घात वाला समघातीय फलन है, प्रकार के अवकल समीकरण को हल करने के लिए सही प्रतिस्थापन x = vy है।
वक्रों के कुल y = ex (Acosx + Bsinx) को निरूपित करने वाला अवकल समीकरण `("d"^2"y")/("d"x^2) - 2 ("dy")/("d"x) + 2"y"` = 0 है।
`x("dy")/("d"x) = "y" + x tan "y"/x` का हल `sin("y"/x)` = cx है।