मराठी

निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए- xdydx+2y=x2logx - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`xdy/dx + 2y = x^2 log x`

बेरीज

उत्तर

दिया गया समीकरण 

`x dy/dx + 2y = x^2 log x`

या `dy/dx + (2/x)y = x log x`

`dy/dx + Py = Q` से तुलना करने पर,

P = `2/x` और Q = x log x

∴` I.F. = e^(int P dx) = e^(int_x^2 dx)`

`= e^(2 log x) = e^(log x^2) = x^2`

अतः अभीष्ट हल

∴ y × I.F. = ∫ Q × I.F. dx + C

⇒ y × x2 = ∫ x2 + x log x dx + C

⇒ x2 y = ∫ x3 log x + C

⇒ x2 y = `log x * x^4/4 - int 1/4 * x^4/4 dx + C`

⇒ x2 y = `x^4/4 log x - 1/4 int x^3 dx + C`

⇒ x2 y = `x^4/4 log x - 1/4 xx x^4/4 + C`

⇒  y = `x^2/16 (4 log x - 1) + C/x^2`

shaalaa.com
अवकल समीकरण
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: अवकल समीकरण - प्रश्नावली 9.6 [पृष्ठ ४३०]

APPEARS IN

एनसीईआरटी Mathematics - Part 1 and 2 [Hindi] Class 12
पाठ 9 अवकल समीकरण
प्रश्नावली 9.6 | Q 6. | पृष्ठ ४३०

संबंधित प्रश्‍न

निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

y dx + (x – y2)dy = 0


अवकल समीकरण x`dy/dx - y = 2x^2` का समाकलन गुणक है:


अवकल समीकरण `(1 - y^2)  dy/dx + yx = ay (-1 < y < 1)` का समाकलन गुणक है:


उस वक्र का समीकरण ज्ञात कीजिए जिसके मूल बिंदु के अतिरिक्त किसी अन्य बिंदु पर स्पर्श रेखा की प्रवणता `"y" + "y"/x` है।


बिंदु (1, 1) से गुजरने वाले एक ऐसे वक्र का समीकरण ज्ञात कौजिए जिसका किसी बिंदु P(x, y) से वक्र के अभिलंब की मूल बिंदु से लंबवत दूरी P से x-अक्ष की दूरी के बराबर है।


बताइए कि समीकरण xdy – ydx = `sqrt(x^2 + "y"^2)  "d"x` किस प्रकार का अवकल समीकरण है तथा इसे हल कीजिए। 


अवकल समीकरण `("d"^2y)/("d"x^2) + 3("dy"/"dx")^2 = x^2 log(("d"^2y)/("d"x^2))` की घात है


दी गई त्रिज्या a के सभी वृत्तों के अवकल समीकरण की कोटि है


अवकल समीकरण `("dy"/"dx")^2 + (("d"^2y)/("d"x^2))^2` = 0 की घात ______ हैं।


अवकल समीकरण `"y"^2 "dy"/"dx" + "y"^2 + 1` = 0 का एक हल x + y = tan–1y है।


एक तल में सभी रेखाएँ जो ऊर्ध्वाधर नहीं हैं के लिए अवकल समीकरण ज्ञात कीजिए।


`2("y" + 3) - x"y" "dy"/"dx"` = 0 को हल कीजिए जबकि y (1) = – 2 दिया है।


Ax2 + By2 = 1 से A और B को विलुप्त करके अवकल समीकरण बनाइए।


केंद्र (1, 2) वाले सभी सकेंद्री वृत्तों के कुल का अवकल समीकरण ज्ञात कीजिए।


`"y" + "d"/("d"x) (x"y") = x(sinx + logx)` को हल कीजिए।


बिंदु (2, 1) से जाने वाले उस वक्र का समीकरण ज्ञात कीजिए जिसका किसी भी बिंदु (x, y) पर स्पर्श रेखा की प्रवणता  `(x^2 + "y"^2)/(2x"y")` है।


मूल बिंदु से गुजरने वाले वक्र का समीकरण ज्ञात कीजिए यदि इस वक्र के किसी बिंदु (x, y) पर स्पर्श रेखा की प्रवणता इस बिंदु के x निर्देशांक (भुज) तथा y निर्देशांक (कोटि) के अंतर के वर्ग के बराबर है।


बिंदु (1, 1) से गुजरने वाले उस वक्र का समीकरण ज्ञात कीजिए जिसके किसी बिंदु P (x, y) से खींची गई स्पर्श रेखा, निर्देशांक अक्षों से A और B पर इस प्रकार मिलती है कि AB का मध्य बिंदु P है।


अवकल समीकरण `("dy")/("d"x) + (1 + "y"^2)/(1 + x^2)` का हल है


अवकल समीकरण  `("dy")/("d"x) = "e"^(x^2/2) + x"y"` का व्यापक हल है


समीकरण (2y – 1)dx – (2x + 3)dy = 0 का हल है


अवकल समीकरण `(("d"^3"y")/("d"x^3))^2 - 3 ("d"^2"y")/("d"x^2) + 2(("dy")/("d"x))^4` = y4 की कोटि तथा घात क्रमश: है


अवकल समीकरण `("d"^2"y")/("d"x^2) + "e"^(("dy")/("d"x))` = 0 की घात ______ है।


`("dy")/("d"x) + "y"/(xlogx) = 1/x` इस ______ प्रकार का समीकरण है।


अवकल समीकरण `x("dy")/("d"x) + 2"y" = x^2` का हल ______ है।


`(1 + x^2) ("dy")/("d"x) + 2x"y" - 4x^2` = 0 का हल ______ है।


अवकल समीकरण ydx + (x + xy)dy = 0 का हल ______ है।


अवकल समीकरण `("d"x)/("dy") + "P"_1x = "Q"_1` के समाकलन गुणक को `"e"^(int "P"_1"dy")` से लिखा जाता है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×