Advertisements
Advertisements
प्रश्न
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`x log x dy/dx + y = 2/x log x`
उत्तर
दिया गया समीकरण
`x log x dy/dx + y = 2/x log x`
या `dy/dx + y/(x log x) = 1/x^2` ....(i)
`dy/dx + Py = Q` से तुलना करने पर,
`P = 1/(x log x)` और `Q = 2/x^2`
∴ `I.F. = e^(int P dx) = e^(int 1/(x log x)dx)`
`= e^(log(log x)) = log x`
अतः अभीष्ट हल
∴ `y × I.F. = int I.F. xx Q dx + C`
`=> y log x = 2 int 1/x^2 (log x) dx + C`
`=> y log x = 2 [log x (- 1/x) - int 1/x ((- 1)/x) dx] + C`
`=> y log x = (- 2)/x log x + 2 int 1/x^2 dx + C`
`=> y log x = (- 2)/x log x - 2/x + C`
⇒ y = log x = `(- 2)/x (1 + log |x|) + C`
APPEARS IN
संबंधित प्रश्न
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`dy/dx + 3y = e^(- 2x)`
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`cos^2 x dy/dx + y = tan x (0 <= x < pi/2)`
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`x "dy"/"dx" + y - x + xy cot x = 0 (x ≠ 0)`
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`(x + 3y^2) dy/dx = y, (y > 0)`
अवकल समीकरण `"dy"/"dx" = y/x` का व्यापक हल ज्ञात कीजिए।
अवकल समीकरण `"dy"/"dx"` = yex, x = 0, y = e में y का मान बताएं जब x = 1
बिंदु 1,`pi/4` से जाने वाले वक् का समीकरण ज्ञात कीजिए यदि किसी बिंदु P (x, y) पर वक्र की स्पर्श रेखा की प्रवणता `"y"/x - cos^2"y"/x` है।
अवकल समीकरण x(1 + y2)dx + y(1 + x2)dy = 0 का व्यापक हल (1 + x2)(1 + y2) = k है।
अवकल समीकरण `(x^2 - 1) "dy"/"dx" + 2x"y" = 1/(x^2 - 1)` को हल कीजिए।
ydx – xdy = x2 ydx को हल कीजिए।
वह अवकल समीकरण ज्ञात कीजिए जिसका व्यापक हल y = (sin–1x)2 + Acos–1x + B है जहाँ A और B स्वेच्छ अचर हैं।
उस वक्र का समीकरण ज्ञात कीजिए जो मूल बिंदु से होकर जाता है और अवकल समीकरण `(1 + x^2) "dy"/"dx" + 2x"y"` = 4x2 को संतुष्ट करता है।
y2dx + (x2 – xy + y2) dy = 0 का व्यापक हल ज्ञात कीजिए।
Ax2 + By2 = 1 से A और B को विलुप्त करके अवकल समीकरण बनाइए।
अवकल समीकरण `(("d"^2"y")/("d"x^2))^2 + (("dy")/("d"x))^2 = xsin(("dy")/("d"x))` की घात है
यदि y = e–x (Acosx + Bsinx) तब y एक हल है
अवकल समीकरण tany sec2 x dx + tanx sec2 ydy = 0 का हल है।
निम्न से कौन सा अवकल समीकरण कोटि 2 का है?
tan–1 x + tan–1 y = c किस अवकल समीकरण का व्यापक हल है?
ex cosy dx – ex siny dy = 0 का व्यापक हल है
अवकल समीकरण `("d"^2"y")/("d"x^2) + (("dy")/("d"x))^3 + 6"y"^5` = 0 की घात है
अवकल समीकरण `("dy")/("d"x) + (1 + "y"^2)/(1 + x^2)` का हल है
अवकल समीकरण `("dy")/("d"x) + "y" = (1 + "y")/x` का समाकलन गुणक है
वक्र कुल y = Ax + A3 उस अवकल समीकरण के तदनुरूपी (संगत) है जिसकी कोटि है
अवकल समीकरण `("dy")/("d"x) = "e"^(x^2/2) + x"y"` का व्यापक हल है
अवकल समीकरण `("dy")/("d"x) + "y"/x` = sec x का हल है
अवकल समीकरण `sqrt(1 + (("dy")/("d"x))^2)` = x की घात ______ है।
अवकल समीकरण `x("dy")/("d"x) + 2"y" = x^2` का हल ______ है।
`(1 + x^2) ("dy")/("d"x) + 2x"y" - 4x^2` = 0 का हल ______ है।
`("dy")/("d"x) = ("y"/x)^(1/3)` का हल `"y"^(2/3) - x^(2/3)` = c है।