मराठी

Dydy(1+x2)dydx+2xy-4x2 = 0 का हल ______ है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

`(1 + x^2) ("dy")/("d"x) + 2x"y" - 4x^2` = 0 का हल ______ है।

रिकाम्या जागा भरा

उत्तर

`(1 + x^2) ("dy")/("d"x) + 2x"y" - 4x^2` = 0 का हल `underline(4/3 x^3/((1 + x^2)) + "c" (1 + x^2)^-1)` है।

व्याख्या:

दिया गया अवकल समीकरण `(1 + x^2) ("dy")/("d"x) + 2x"y" - 4x^2` = 0 है।

⇒ `("dy")/("d"x) + (2x"y")/(1 + x^2) = (4x^2)/(1 + x^2)`

क्योंकि यह एक रैखिक अवकल समीकरण है।

∴ P = `(2x)/(1 + x^2)` और Q = `(4x^2)/(1 + x^2)`

समाकलन गुणक I.F. = `"e"^(int "Pdx")`

= `"e"^(int (2x)/(1 + x^2) "d"x)`

= `"e"^(log(1 + x^2))`

= `(1 + x^2)`

∴ हल `"y" xx "I"."F" = int "Q" xx "I"."F". "d"x + "c"` है।

⇒ `"y" xx (1 + x^2) = int (4x)/(1 + x^2) xx (1 + x^2)"d"x + "c"`

⇒ `"y" xx (1 + x^2) = int 4x^2 "d"x + "c"`

⇒ `"y" xx (1 + x^2) = 4/3 x^3 + "c"`

⇒ y = `4/3 x^3/((1 + x^2)) + "c"(1 + x^2)^-1`

shaalaa.com
अवकल समीकरण
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: अवकल समीकरण - प्रश्नावली [पृष्ठ १९७]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
पाठ 9 अवकल समीकरण
प्रश्नावली | Q 76. (vii) | पृष्ठ १९७

संबंधित प्रश्‍न

निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

(1 + x2)dy + 2xy dx = cot x dx (x ≠ 0)


निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`x "dy"/"dx" + y - x + xy cot x = 0 (x ≠ 0)`


निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

y dx + (x – y2)dy = 0


निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए-

`(1 + x^2) dy/dx + 2xy = 1/(1 + x^2); y = 0` यदि x = 1


उस वक्र का समीकरण ज्ञात कीजिए जिसके मूल बिंदु के अतिरिक्त किसी अन्य बिंदु पर स्पर्श रेखा की प्रवणता `"y" + "y"/x` है।


अवकल समीकरण `[1 + ("dy"/"dx")^2]^2 = ("d"^2y)/("d"x^2)`  के क्रमशः कोटि और घात हैं


अवकल समीकरण `x "dt"/"dx" + 2"y"` = x2 का हल है


परवलयों y2 = 4ax के कुल को निरूपित करने वाले अवकल समीकरण की कोटि ______ है।


अवकल समीकरण `sqrt(1 + ("d"^2y)/("d"x^2)) = x + "dy"/"dx"` की घात परिभाषित नहीं है।


F(x, y) = `("y"cos("y"/x) + x)/(xcos("y"/x))` समघातीय फलन नहीं है।


अवकल समीकरण `"dy"/"dx" - y` = cos x is ex का समाकलन गुणक ex है।


अवकल समीकरण `"dy"/"dx" + "y" sec x` = tan x का व्यापक हल y(secx – tanx) = secx – tanx + x + k है।


अवकल समीकरण `"y"^2 "dy"/"dx" + "y"^2 + 1` = 0 का एक हल x + y = tan–1y है।


उन सभी वृत्तों के समीकरण का अवकल समीकरण ज्ञात कीजिए जो मूल बिंदु से होकर जाते हैं तथा केंद्र y-अक्ष पर स्थित है।


`2("y" + 3) - x"y" "dy"/"dx"` = 0 को हल कीजिए जबकि y (1) = – 2 दिया है।


`"y" + "d"/("d"x) (x"y") = x(sinx + logx)` को हल कीजिए।


`("dy")/("d"x) = cos(x + "y") + sin(x + "y")` को हल कीजिए [संकेत : x + y = z रखिए]


बिंदु (2, 1) से जाने वाले उस वक्र का समीकरण ज्ञात कीजिए जिसका किसी भी बिंदु (x, y) पर स्पर्श रेखा की प्रवणता  `(x^2 + "y"^2)/(2x"y")` है।


अवकल समीकरण tany sec2 x dx + tanx sec2 ydy = 0 का हल है।


y = Ax + A3 } द्वारा निरूपित वक्रों के कुल के अवकल समीकरण की घात है


अवकल समीकरण `("d"^2"y")/("d"x^2) + (("dy")/("d"x))^3 + 6"y"^5` = 0 की घात है


वक्र कुल y = Ax + A3 उस अवकल समीकरण के तदनुरूपी (संगत) है जिसकी कोटि है


`("dy")/("d"x) + "y" = "e"^-x`, y(0) = 0 का हल है


वक्र कुल  y2 = 4a(x + a) का अवकल समीकरण है


`("d"^2"y")/("d"x^2) - 2 ("dy")/("d"x) + "y"` = 0 का निम्त में से कौन सा व्यापक हल है


अवकल समीकरण (ex + 1) ydy = (y + 1) exdx का व्यापाक हल है


अवकल समीकरण `("d"^2"y")/("d"x^2) + "e"^(("dy")/("d"x))` = 0 की घात ______ है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×