Advertisements
Advertisements
प्रश्न
`(1 + x^2) ("dy")/("d"x) + 2x"y" - 4x^2` = 0 का हल ______ है।
उत्तर
`(1 + x^2) ("dy")/("d"x) + 2x"y" - 4x^2` = 0 का हल `underline(4/3 x^3/((1 + x^2)) + "c" (1 + x^2)^-1)` है।
व्याख्या:
दिया गया अवकल समीकरण `(1 + x^2) ("dy")/("d"x) + 2x"y" - 4x^2` = 0 है।
⇒ `("dy")/("d"x) + (2x"y")/(1 + x^2) = (4x^2)/(1 + x^2)`
क्योंकि यह एक रैखिक अवकल समीकरण है।
∴ P = `(2x)/(1 + x^2)` और Q = `(4x^2)/(1 + x^2)`
समाकलन गुणक I.F. = `"e"^(int "Pdx")`
= `"e"^(int (2x)/(1 + x^2) "d"x)`
= `"e"^(log(1 + x^2))`
= `(1 + x^2)`
∴ हल `"y" xx "I"."F" = int "Q" xx "I"."F". "d"x + "c"` है।
⇒ `"y" xx (1 + x^2) = int (4x)/(1 + x^2) xx (1 + x^2)"d"x + "c"`
⇒ `"y" xx (1 + x^2) = int 4x^2 "d"x + "c"`
⇒ `"y" xx (1 + x^2) = 4/3 x^3 + "c"`
⇒ y = `4/3 x^3/((1 + x^2)) + "c"(1 + x^2)^-1`
APPEARS IN
संबंधित प्रश्न
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
(1 + x2)dy + 2xy dx = cot x dx (x ≠ 0)
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`x "dy"/"dx" + y - x + xy cot x = 0 (x ≠ 0)`
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
y dx + (x – y2)dy = 0
निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए-
`(1 + x^2) dy/dx + 2xy = 1/(1 + x^2); y = 0` यदि x = 1
उस वक्र का समीकरण ज्ञात कीजिए जिसके मूल बिंदु के अतिरिक्त किसी अन्य बिंदु पर स्पर्श रेखा की प्रवणता `"y" + "y"/x` है।
अवकल समीकरण `[1 + ("dy"/"dx")^2]^2 = ("d"^2y)/("d"x^2)` के क्रमशः कोटि और घात हैं
अवकल समीकरण `x "dt"/"dx" + 2"y"` = x2 का हल है
परवलयों y2 = 4ax के कुल को निरूपित करने वाले अवकल समीकरण की कोटि ______ है।
अवकल समीकरण `sqrt(1 + ("d"^2y)/("d"x^2)) = x + "dy"/"dx"` की घात परिभाषित नहीं है।
F(x, y) = `("y"cos("y"/x) + x)/(xcos("y"/x))` समघातीय फलन नहीं है।
अवकल समीकरण `"dy"/"dx" - y` = cos x is ex का समाकलन गुणक ex है।
अवकल समीकरण `"dy"/"dx" + "y" sec x` = tan x का व्यापक हल y(secx – tanx) = secx – tanx + x + k है।
अवकल समीकरण `"y"^2 "dy"/"dx" + "y"^2 + 1` = 0 का एक हल x + y = tan–1y है।
उन सभी वृत्तों के समीकरण का अवकल समीकरण ज्ञात कीजिए जो मूल बिंदु से होकर जाते हैं तथा केंद्र y-अक्ष पर स्थित है।
`2("y" + 3) - x"y" "dy"/"dx"` = 0 को हल कीजिए जबकि y (1) = – 2 दिया है।
`"y" + "d"/("d"x) (x"y") = x(sinx + logx)` को हल कीजिए।
`("dy")/("d"x) = cos(x + "y") + sin(x + "y")` को हल कीजिए [संकेत : x + y = z रखिए]
बिंदु (2, 1) से जाने वाले उस वक्र का समीकरण ज्ञात कीजिए जिसका किसी भी बिंदु (x, y) पर स्पर्श रेखा की प्रवणता `(x^2 + "y"^2)/(2x"y")` है।
अवकल समीकरण tany sec2 x dx + tanx sec2 ydy = 0 का हल है।
y = Ax + A3 } द्वारा निरूपित वक्रों के कुल के अवकल समीकरण की घात है
अवकल समीकरण `("d"^2"y")/("d"x^2) + (("dy")/("d"x))^3 + 6"y"^5` = 0 की घात है
वक्र कुल y = Ax + A3 उस अवकल समीकरण के तदनुरूपी (संगत) है जिसकी कोटि है
`("dy")/("d"x) + "y" = "e"^-x`, y(0) = 0 का हल है
वक्र कुल y2 = 4a(x + a) का अवकल समीकरण है
`("d"^2"y")/("d"x^2) - 2 ("dy")/("d"x) + "y"` = 0 का निम्त में से कौन सा व्यापक हल है
अवकल समीकरण (ex + 1) ydy = (y + 1) exdx का व्यापाक हल है
अवकल समीकरण `("d"^2"y")/("d"x^2) + "e"^(("dy")/("d"x))` = 0 की घात ______ है।