मराठी

वह अवकल समीकरण ज्ञात कीजिए जिसका व्यापक हल y = (sin–1x)2 + Acos–1x + B है जहाँ A और B स्वेच्छ अचर हैं। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

वह अवकल समीकरण ज्ञात कीजिए जिसका व्यापक हल y = (sin–1x)2 + Acos–1x + B है जहाँ A और B स्वेच्छ अचर हैं।

बेरीज

उत्तर

दिया गया समीकरण y = (sin–1x)2 + Acos–1x + B है।

`"dy"/"dx" = 2 sin^-1x * 1/sqrt(1 - x^2) + "A" * ((-1)/sqrt(1 - x^2))`

दोनों पक्षों को `sqrt(1 - x^2)` से गुणा करने पर हमें प्राप्त होता है

`sqrt(1 - x^2)  "dy"/"dx" = 2sin^-1x - "A"`

पुनः x में अवकलन करने पर, हम प्राप्त करते हैं

`sqrt(1 - x^2)  ("d"^2"y")/("d"x^2) + "dy"/"dx" * (1 xx (-2x))/(2sqrt(1 - x^2)) = 2/sqrt(1 - x^2)`

⇒ `sqrt(1 - x^2)  ("d"^2"y")/("d"x^2) - x/sqrt(1 - x^2) "dy"/"dx" * 2/sqrt(1 - x^2)`

दोनों पक्षों को `sqrt(1 - x^2)` से गुणा करने पर हमें प्राप्त होता है

⇒ `(1 - x^2) ("d"^2"y")/("d"x^2) - x "dy"/"dx" - 2` = 0

जो वाँछित अवकल समीकरण है।

shaalaa.com
अवकल समीकरण
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: अवकल समीकरण - प्रश्नावली [पृष्ठ १८९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
पाठ 9 अवकल समीकरण
प्रश्नावली | Q 13 | पृष्ठ १८९

संबंधित प्रश्‍न

निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए।

(x + y) dy + (x – y) dx = 0; y = 1; यदि x = 1


निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`dy/dx + y/x + x^2`


निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

y dx + (x – y2)dy = 0


अवकल समीकरण `("d"^2y)/("d"x^2) + 3("dy"/"dx")^2 = x^2 log(("d"^2y)/("d"x^2))` की घात है


दी गई त्रिज्या a के सभी वृत्तों के अवकल समीकरण की कोटि है


अवकल समीकरण `2x * "dy"/"dx" y` = 3 का हल किस कुल को निरूपित करता है?


अवकल समीकरण `("dy"/"dx")^2 + (("d"^2y)/("d"x^2))^2` = 0 की घात ______ हैं।


वक्रों के कुल y = A sinx + B cosx को निरूपित करने वाला अवकल समीकरण ______ है।


अवकल समीकरण `sqrt(1 + ("d"^2y)/("d"x^2)) = x + "dy"/"dx"` की घात परिभाषित नहीं है।


एक तल में सभी रेखाएँ जो ऊर्ध्वाधर नहीं हैं के लिए अवकल समीकरण ज्ञात कीजिए।


दिया है कि `"dy"/"dx" = "e"^-2x` और जब x = 5 तब y = 0 है। जब y = 3 है तब x का मान ज्ञात कीजिए।


उन सभी वृत्तों के समीकरण का अवकल समीकरण ज्ञात कीजिए जो मूल बिंदु से होकर जाते हैं तथा केंद्र y-अक्ष पर स्थित है।


केंद्र (1, 2) वाले सभी सकेंद्री वृत्तों के कुल का अवकल समीकरण ज्ञात कीजिए।


`"y" + "d"/("d"x) (x"y") = x(sinx + logx)` को हल कीजिए।


बिंदु (2, 1) से जाने वाले उस वक्र का समीकरण ज्ञात कीजिए जिसका किसी भी बिंदु (x, y) पर स्पर्श रेखा की प्रवणता  `(x^2 + "y"^2)/(2x"y")` है।


अवकल समीकरण `[1 + (("dy")/("d"x))^2]^(3/2) = ("d"^2"y")/("d"x^2)` की घात है


y = Ax + A3 } द्वारा निरूपित वक्रों के कुल के अवकल समीकरण की घात है


`(x"dy")/("d"x) - "y" = x^4 - 3x`  का समाकलन गुणक है:


`("dy")/("d"x) - "y"` = 1 का हल जब, y(0) = 1 है


अवकल समीकरण `("d"^2"y")/("d"x^2) + (("dy")/("d"x))^3 + 6"y"^5` = 0 की घात है


अवकल समीकरण `("dy")/("d"x) + "y" tanx - secx` = 0 का समाकलन गुणक है


अवकल समीकरण `("dy")/("d"x) + "y" = (1 + "y")/x` का समाकलन गुणक है


`("dy")/("d"x) = 2x"e"^(x^2 - "y")` का व्यापक हल है


`("dy")/("d"x) + "y"tanx = secx` व्यापक हल है


अवकल समीकरण `sqrt(1 + (("dy")/("d"x))^2)` = x की घात ______ है।


अवकल समीकरण `("d"x)/("dy") + "P"_1x = "Q"_1` के समाकलन गुणक को `"e"^(int "P"_1"dy")` से लिखा जाता है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×