Advertisements
Advertisements
प्रश्न
अवकल समीकरण `("d"^2y)/("d"x^2) + 3("dy"/"dx")^2 = x^2 log(("d"^2y)/("d"x^2))` की घात है
पर्याय
1
2
3
परिभाषित नहीं है।
उत्तर
सही उत्तर परिभाषित नहीं है।
व्याख्या:
दिया गया अवकल समीकरण अवकलनजों में बहुपद समीकरण नहीं है। इसलिए इसकी घात परिभाषित नहीं है।
APPEARS IN
संबंधित प्रश्न
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`cos^2 x dy/dx + y = tan x (0 <= x < pi/2)`
निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए-
`dy/dx - 3 y cot x = sin 2x; y = 2` यदि x = `pi/2`
अवकल समीकरण `"dy"/"dx" = y/x` का व्यापक हल ज्ञात कीजिए।
अवकल समीकरण `[1 + ("dy"/"dx")^2]^2 = ("d"^2y)/("d"x^2)` के क्रमशः कोटि और घात हैं
अवकल समीकरण `("dy"/"dx")^2 - x "dy"/"dx" + "y"` = 0 का एक हल है
अवकल समीकरण `x "dt"/"dx" + 2"y"` = x2 का हल है
अवकल समीकरण tan x dx + tan y dy = 0 के विशिष्ट हल में स्वेच्छ अचरों की संख्या ______ है।
F(x, y) = `(sqrt(x^2 + y^2) + y)/x` का घात ______ है।
अवकल समीकरण `"dy"/"dx" = "e"^(x - y)` का व्यापक हल ______ है।
अवकल समीकरण `sqrt(1 + ("d"^2y)/("d"x^2)) = x + "dy"/"dx"` की घात परिभाषित नहीं है।
`"dy"/"dx" + "y"` = 5 एक `"dy"/"dx" + "Py"` = Q प्रकार का अवकल समीकरण है परंतु इसे चर पृथक्करणीय विधि से भी हल कर सकते हैं।
अवकल समीकरण `("d"^2"y")/("d"x^2) - x^2 "dy"/"dx" + x"y"` = x का एक विशिष्ट हल y = x है।
`"dy"/"dx"` = 2y–x का हल ज्ञात कीजिए।
अवकल समीकरण `"dy"/"dx" + 1` = ex + y को हल कीजिए।
उस वक्र का समीकरण ज्ञात कीजिए जो मूल बिंदु से होकर जाता है और अवकल समीकरण `(1 + x^2) "dy"/"dx" + 2x"y"` = 4x2 को संतुष्ट करता है।
(x + y) (dx – dy) = dx + dy को हल कीजिए। [संकेत : dx और dy को पृथक करने के पश्चात x + y = z रखिए ]
Ax2 + By2 = 1 से A और B को विलुप्त करके अवकल समीकरण बनाइए।
y = Acos αx + Bsin αx जहाँ A और B स्वेछ अचर हैं के लिए अवकल समीकरण है
y = Ax + A3 } द्वारा निरूपित वक्रों के कुल के अवकल समीकरण की घात है
`("dy")/("d"x) = ("y" + 1)/(x - 1)`, जब y (1) = 2 है के हलों की संख्या है।
अवकल समीकरण `(1 - x^2) ("dy")/("d"x) - x"y"` = 1 का समाकलन गुणक है
अवकल समीकरण `("dy")/("d"x) + "y" tanx - secx` = 0 का समाकलन गुणक है
अवकल समीकरण `("dy")/("d"x) + (1 + "y"^2)/(1 + x^2)` का हल है
अवकल समीकरण `("dy")/("d"x) = "e"^(x^2/2) + x"y"` का व्यापक हल है
अवकल समीकरण `sqrt(1 + (("dy")/("d"x))^2)` = x की घात ______ है।
`("dy")/("d"x) + "y"/(xlogx) = 1/x` इस ______ प्रकार का समीकरण है।
अवकल समीकरण ydx + (x + xy)dy = 0 का हल ______ है।
अवकल समीकरण coty dx = xdy का हल ______ है।
एक तल में सभी अक्षतिज (रेखाएँ जो क्षैतिज नहीं हैं) सरल रेखाओं का अवकल
समीकरण `("d"^2x)/("dy"^2)` = 0 है।