मराठी

अवकल समीकरण dydxdydx+1 = ex + y को हल कीजिए। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

अवकल समीकरण `"dy"/"dx" + 1` = ex + y को हल कीजिए।

बेरीज

उत्तर

दिया गया है: `"dy"/"dx" + 1` = ex + y 

x + y = t रखिए

∴ `1 + "dy"/"dx" = "dt"/"dx"`

∴ `"dt"/"dx"` = et

⇒ `"dt"/"e"^"t"` = dx

⇒ `"e"^-"t" "dt"` = dx

दोनों पक्षों को समाकलन करते हुए, हमें प्राप्त होता है

`int"e"^-1 "dt" = int "d"x`

⇒ `-"e"^"t"` = x + c

⇒ `-"e"^(-(x + "y")` = x + c

⇒`(-1)/"e"^(x + "y")` = x + c

⇒ (x + c)ex + y = –1

इसलिए, वाँछित हल (x + c).ex + y + 1 = 0 है।

shaalaa.com
अवकल समीकरण
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: अवकल समीकरण - प्रश्नावली [पृष्ठ १८९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
पाठ 9 अवकल समीकरण
प्रश्नावली | Q 7 | पृष्ठ १८९

संबंधित प्रश्‍न

निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए।

(x + y) dy + (x – y) dx = 0; y = 1; यदि x = 1


निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`x log x dy/dx + y = 2/x log x`


निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`(x + y) dy/dx = 1`


बिंदु (1, 1) से गुजरने वाले एक ऐसे वक्र का समीकरण ज्ञात कौजिए जिसका किसी बिंदु P(x, y) से वक्र के अभिलंब की मूल बिंदु से लंबवत दूरी P से x-अक्ष की दूरी के बराबर है।


बिंदु 1,`pi/4` से जाने वाले वक् का समीकरण ज्ञात कीजिए यदि किसी बिंदु P (x, y) पर वक्र की स्पर्श रेखा की प्रवणता `"y"/x - cos^2"y"/x` है।


बताइए कि समीकरण xdy – ydx = `sqrt(x^2 + "y"^2)  "d"x` किस प्रकार का अवकल समीकरण है तथा इसे हल कीजिए। 


अवकल समीकरण `"dy"/"dx" (x log x) + y` = 2logx का समाकलन गुणक है


परवलयों y2 = 4ax के कुल को निरूपित करने वाले अवकल समीकरण की कोटि ______ है।


अवकल समीकरण `("dy"/"dx")^2 + (("d"^2y)/("d"x^2))^2` = 0 की घात ______ हैं।


`"dy"/"dx"` = 2y–x का हल ज्ञात कीजिए।


अवकल समीकरण `(x^2 - 1) "dy"/"dx" + 2x"y" = 1/(x^2 - 1)` को हल कीजिए।


अवकल समीकरण `"dy"/"dx" + 2x"y"` = y को हल कीजिए।


ydx – xdy = x2 ydx को हल कीजिए।


उन सभी वृत्तों के समीकरण का अवकल समीकरण ज्ञात कीजिए जो मूल बिंदु से होकर जाते हैं तथा केंद्र y-अक्ष पर स्थित है।


`x^2 "dy"/"dx"` = x2 + xy + y2 को हल कीजिए।


(1 + tany)(dx – dy) + 2xdy = 0 का व्यापक हल ज्ञात कीजिए।


अवकल समीकरण `[1 + (("dy")/("d"x))^2]^(3/2) = ("d"^2"y")/("d"x^2)` की घात है


अवकल समीकरण xdy – ydx = 0 का हल निरूपित करता है एक ______


अवकल समीकरण `cosx ("dy")/("d"x) + "y"sinx` = 1 का समाकलन गुणक है।


अवकल समीकरण `"y" ("dy")/("d"x) + "c"` निरूपित करता है


ex cosy dx – ex siny dy = 0 का व्यापक हल है


`("dy")/("d"x) + "y" = "e"^-x` जब y(0) = 0  का हल है


y = aemx+ be–mx निम्न में से किस अवकल समीकरण को संतुष्ट करता है


`x ("dy")/("d"x) + "y"` = ex का हल है


अवकल समीकरण `("dy")/("d"x) + "y"/x` = sec x का हल है


अवकल समीकरण `("d"^2"y")/("d"x^2) + "e"^(("dy")/("d"x))` = 0 की घात ______ है।


अवकल समीकरण `x("dy")/("d"x) + 2"y" = x^2` का हल ______ है।


अवकल समीकरण `("dy")/("d"x) = (x + 2"y")/x` का हल x + y = kx2 है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×