मराठी

Dydxadydx+ay = emx का व्यापक हल ज्ञात कीजिए। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

`"dy"/"dx" + "a"y` = emx का व्यापक हल ज्ञात कीजिए।

बेरीज

उत्तर

दिया गया समीकरण है `"dy"/"dx" + "a"y` = emx 

यहाँ, P = a और Q = emx 

∴ I.F. = `"e"^(int Pdx)`

= `"e"^(int a .dx)`

= eax.

समीकरण का हल है `y xx "I"."F" = int "Q"  "I"."F"  "d"x + "c"`

⇒ `y."e"^("a"x) = int "e"^"mx" . "e"^("a"x)  "d"x + "c"`

⇒ `y . "e"^("a"x) = int "e"^(("m" + "a")x)  "d"x + "c"`

⇒ `y . "e"^("a"x) = "e"^(("m" + "a")x)/(("m" + "a")) + "c"`

⇒ y = `"e"^(("m" + "a")x)/(("m" + "a")) . "e"^(-"a"x) + "c"."e"^(-"a"x)`

 ∴ y = `"e"^("m"x)/(("m" + "a")) + "c" . "e"^(-"a"x)`

shaalaa.com
अवकल समीकरण
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: अवकल समीकरण - प्रश्नावली [पृष्ठ १८९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
पाठ 9 अवकल समीकरण
प्रश्नावली | Q 6 | पृष्ठ १८९

संबंधित प्रश्‍न

निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`x "dy"/"dx" + y - x + xy cot x = 0 (x ≠ 0)`


अवकल समीकरण `"dy"/"dx" = y/x` का व्यापक हल ज्ञात कीजिए।


अवकल समीकरण `"dy"/"dx" + y/x` = x2 को हल कीजिए।


मूल बिंदु से गुजरने वाली सरल रेखाओं के कुल का अवकल समीकरण ज्ञात कीजिए।


अवकल समीकरण `"dx"/x + "dy"/y` = 0 का हल है


अवकल समीकरण `x "dt"/"dx" + 2"y"` = x2 का हल है


अवकल समीकरण  `"dy"/"dx" = "e"^(x - y)` का व्यापक हल ______ है।


जब `("e"^(-2sqrt(x))/sqrt(x) - y/sqrt(x))("d"x)/("d"y) = 1(x ≠ 0)` को `"dy"/"dx" + "P"y` = Q, के रूप में लिखते हैं तब P = ______ है।


`"dy"/"dx" + "y"` = 5 एक `"dy"/"dx" + "Py"` = Q प्रकार का अवकल समीकरण है परंतु इसे चर पृथक्करणीय विधि से भी हल कर सकते हैं।


दिया है कि `"dy"/"dx" = "e"^-2x` और जब x = 5 तब y = 0 है। जब y = 3 है तब x का मान ज्ञात कीजिए।


अवकल समीकरण (1 + y2) tan–1xdx + 2y(1 + x2) dy = 0 को हल कीजिए।


`"y" + "d"/("d"x) (x"y") = x(sinx + logx)` को हल कीजिए।


`("dy")/("d"x) = cos(x + "y") + sin(x + "y")` को हल कीजिए [संकेत : x + y = z रखिए]


`("dy")/("d"x) -3"y" = sin2x` का व्यापक हल ज्ञात कीजिए।


बिंदु (2, 1) से जाने वाले उस वक्र का समीकरण ज्ञात कीजिए जिसका किसी भी बिंदु (x, y) पर स्पर्श रेखा की प्रवणता  `(x^2 + "y"^2)/(2x"y")` है।


बिंदु (1, 0) से जाने वाले उस वक्र का समीकरण ज्ञात कीजिए जिसके किसी भी बिंदु (x, y) पर स्पर्श रेखा की प्रवणता `("y" - 1)/(x^2 + x)` है।


अवकल समीकरण `(("d"^2"y")/("d"x^2))^2 + (("dy")/("d"x))^2 = xsin(("dy")/("d"x))` की घात है


y = Acos αx + Bsin αx जहाँ A और B स्वेछ अचर हैं के लिए अवकल समीकरण है


अवकल समीकरण tany sec2 x dx + tanx sec2 ydy = 0 का हल है।


`("dy")/("d"x) = ("y" + 1)/(x - 1)`, जब y (1) = 2 है के हलों की संख्या है।


निम्न से कौन सा अवकल समीकरण कोटि 2 का है?


`x ("dy")/("d"x) + "y"` = ex का हल है


समीकरण (2y – 1)dx – (2x + 3)dy = 0 का हल है


`("dy")/("d"x) + "y" = "e"^-x`, y(0) = 0 का हल है


अवकल समीकरण `(("d"^3"y")/("d"x^3))^2 - 3 ("d"^2"y")/("d"x^2) + 2(("dy")/("d"x))^4` = y4 की कोटि तथा घात क्रमश: है


`("dy")/("d"x) + "y"tanx = secx` व्यापक हल है


`("dy")/("d"x) + "y"/(xlogx) = 1/x` इस ______ प्रकार का समीकरण है।


`("dy")/("d"x) + "y"` = sinx का व्यापक हल ______ है।


`("dy")/("d"x) + "y" = (1 + "y")/x` का समाकलन गुणक ______ है।


अवकल समीकरण `("dy")/("d"x) = (x + 2"y")/x` का हल x + y = kx2 है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×