मराठी

अवकल समीकरण dydx2x⋅dydxy = 3 का हल किस कुल को निरूपित करता है? - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

अवकल समीकरण `2x * "dy"/"dx" y` = 3 का हल किस कुल को निरूपित करता है?

पर्याय

  • सरल रेखाओं

  • वृत्तों

  • परवलयों

  • दीर्घ वृत्तों

MCQ

उत्तर

सही उत्तर परवलयों है।

व्याख्या:

दिए गए समीकरण को इस प्रकार लिखा जा सकता है

`(2"d"y)/(y + 3) = "dx"/x`

⇒ 2log (y + 3) = logx + logc

⇒ (y + 3)2 = cx सही है जो परवलयों के एक कुल को निरूपित करता है।

shaalaa.com
अवकल समीकरण
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: अवकल समीकरण - हल किये हुए उदाहरण [पृष्ठ १८३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
पाठ 9 अवकल समीकरण
हल किये हुए उदाहरण | Q 16 | पृष्ठ १८३

संबंधित प्रश्‍न

निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`dy/dx + y/x + x^2`


निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए-

`dy/dx + 2  y tan x = sin x`; y = 0 यदि x = `pi/4`


अवकल समीकरण `(1 - y^2)  dy/dx + yx = ay (-1 < y < 1)` का समाकलन गुणक है:


अवकल समीकरण `"dy"/"dx" + y/x` = x2 को हल कीजिए।


अवकल समीकरण `(1 + "dy"/"dx")^3 = (("d"^2y)/("d"x^2))^2` की घात है


जब `("e"^(-2sqrt(x))/sqrt(x) - y/sqrt(x))("d"x)/("d"y) = 1(x ≠ 0)` को `"dy"/"dx" + "P"y` = Q, के रूप में लिखते हैं तब P = ______ है।


अवकल समीकरण `"y"^2 "dy"/"dx" + "y"^2 + 1` = 0 का एक हल x + y = tan–1y है।


यदि `(1 + "t")"dy"/"dt" - "ty"` = 1 का  y(t) एक हल है और y(0) = – 1 है तो दिखाइए कि y(1) = `-1/2`


उस वक्र का समीकरण ज्ञात कीजिए जो मूल बिंदु से होकर जाता है और अवकल समीकरण `(1 + x^2) "dy"/"dx" + 2x"y"` = 4x2 को संतुष्ट करता है।


Ax2 + By2 = 1 से A और B को विलुप्त करके अवकल समीकरण बनाइए।


(1 + tany)(dx – dy) + 2xdy = 0 का व्यापक हल ज्ञात कीजिए।


`("dy")/("d"x) -3"y" = sin2x` का व्यापक हल ज्ञात कीजिए।


अवकल समीकरण `(("d"^2"y")/("d"x^2))^2 + (("dy")/("d"x))^2 = xsin(("dy")/("d"x))` की घात है


यदि y = e–x (Acosx + Bsinx) तब y एक हल है


अवकल समीकरण `("d"^2"y")/("d"x^2) + (("dy")/("d"x))^3 + 6"y"^5` = 0 की घात है


`("dy")/("d"x) + "y" = "e"^-x` जब y(0) = 0  का हल है


वक्र कुल x2 + y2 – 2ay = 0, जहाँ a एक स्वेच्छ अचर है का अवकल समीकरण है


वक्र कुल y = Ax + A3 उस अवकल समीकरण के तदनुरूपी (संगत) है जिसकी कोटि है


`("dy")/("d"x) + "y" = "e"^-x`, y(0) = 0 का हल है


अवकल समीकरण `[1 + (("dy")/("d"x))^2] = ("d"^2"y")/("d"x^2)` की कोटि तथा घात क्रमश: है


`("d"^2"y")/("d"x^2) - 2 ("dy")/("d"x) + "y"` = 0 का निम्त में से कौन सा व्यापक हल है


अवकल समीकरण `("dy")/("d"x) + "y"/x` = sec x का हल है


अवकल समीकरण (ex + 1) ydy = (y + 1) exdx का व्यापाक हल है


`(1 + x^2) ("dy")/("d"x) + 2x"y" - 4x^2` = 0 का हल ______ है।


अवकल समीकरण ydx + (x + xy)dy = 0 का हल ______ है।


अवकल समीकरण coty dx = xdy का हल ______ है।


`("dy")/("d"x) + "y" = (1 + "y")/x` का समाकलन गुणक ______ है।


द्वितीय कोटि के अवकल समीकरण के विशिष्ट हल में स्वेच्छ अचरों की संख्या ं

दो होती है।


वक्रों के कुल y = ex (Acosx + Bsinx)  को निरूपित करने वाला अवकल समीकरण `("d"^2"y")/("d"x^2) - 2 ("dy")/("d"x) + 2"y"` = 0  है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×