Advertisements
Advertisements
प्रश्न
मूल बिंदु से गुजरने वाले वक्र का समीकरण ज्ञात कीजिए यदि इस वक्र के किसी बिंदु (x, y) पर स्पर्श रेखा की प्रवणता इस बिंदु के x निर्देशांक (भुज) तथा y निर्देशांक (कोटि) के अंतर के वर्ग के बराबर है।
उत्तर
यहाँ, वक्र की स्पर्श रेखा का ढलान = `("dy")/("d"x)` और भुज और कोटि के बीच का अंतर = x – y.
∴ प्रतिबंध के अनुसार, `("dy")/("d"x) = (x - "y")^2`
x – y = v रखिए
`1 - ("dy")/("d"x) = "dv"/("d"x)`
∴ `("dy")/("d"x) = 1 - "dv"/"dx"`
∴ समीकरण `1 - "dv"/"dx" = "v"^2` बन जाता है
⇒ `"dv"/"dx" = 1 - "v"^2`
⇒ `"dv"/(1 - "v"^2)` = dx
दोनों पक्षों का समाकलन करने पर हमें प्राप्त होता है
`int "dv"/(1 - "v"^2) = int "d"x`
⇒ `1/2 log |(1 + "v")/(1 - "v")|` = x + c
⇒ `1/2 log|(1 + x - "y")/(1 - x + "y")|` = x + c ......(1)
क्योंकि, वक्र (0, 0) से होकर जा रहा है
Then `1/2 log|(1 + 0 - 0)/(1 - 0 + 0)|` = 0 + c
⇒ c = 0
∴ समीकरण (1) में c = 0 रखने पर हमें प्राप्त होता है
`1/2 log |(1 + x - "y")/(1 - x + "y")|` = x
⇒ `log|(1 + x - "y")/(1 - x + "y")|` = 2x
∴ `(1 + x - "y")/(1 - x + "y")|` = e2x
⇒ (1 + x – y) = e2x (1 – x + y)
इसलिए, वाँछित समीकरण (1 + x – y) = e2x (1 – x + y) है।
APPEARS IN
संबंधित प्रश्न
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`cos^2 x dy/dx + y = tan x (0 <= x < pi/2)`
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`x "dy"/"dx" + y - x + xy cot x = 0 (x ≠ 0)`
अवकल समीकरण `"dy"/"dx"` = yex, x = 0, y = e में y का मान बताएं जब x = 1
अवकल समीकरण `(1 + "dy"/"dx")^3 = (("d"^2y)/("d"x^2))^2` की घात है
निम्न में से कौन सा x और y में समघातीय फलन नहीं है।
अवकल समीकरण `"dx"/x + "dy"/y` = 0 का हल है
अवकल समीकरण `x "dy"/"dx" - y` = sinx का समाकलन गणक ______ है।
अवकल समीकरण `"dy"/"dx" = "e"^(x - y)` का व्यापक हल ______ है।
F(x, y) = `("y"cos("y"/x) + x)/(xcos("y"/x))` समघातीय फलन नहीं है।
अवकल समीकरण x(1 + y2)dx + y(1 + x2)dy = 0 का व्यापक हल (1 + x2)(1 + y2) = k है।
अवकल समीकरण `"dy"/"dx" + "y" sec x` = tan x का व्यापक हल y(secx – tanx) = secx – tanx + x + k है।
अवकल समीकरण `("d"^2"y")/("d"x^2) - x^2 "dy"/"dx" + x"y"` = x का एक विशिष्ट हल y = x है।
अवकल समीकरण `(x^2 - 1) "dy"/"dx" + 2x"y" = 1/(x^2 - 1)` को हल कीजिए।
`(x + 2"y"^3) "dy"/"dx"` = y का व्यापक हल ज्ञात कीजिए।
यदि `(1 + "t")"dy"/"dt" - "ty"` = 1 का y(t) एक हल है और y(0) = – 1 है तो दिखाइए कि y(1) = `-1/2`
`("dy")/("d"x) -3"y" = sin2x` का व्यापक हल ज्ञात कीजिए।
बिंदु (1, 0) से जाने वाले उस वक्र का समीकरण ज्ञात कीजिए जिसके किसी भी बिंदु (x, y) पर स्पर्श रेखा की प्रवणता `("y" - 1)/(x^2 + x)` है।
बिंदु (1, 1) से गुजरने वाले उस वक्र का समीकरण ज्ञात कीजिए जिसके किसी बिंदु P (x, y) से खींची गई स्पर्श रेखा, निर्देशांक अक्षों से A और B पर इस प्रकार मिलती है कि AB का मध्य बिंदु P है।
`x ("dy")/("d"x) = "y" (log "y" – log x + 1)` को हल कीजिए।
अवकल समीकरण xdy – ydx = 0 का हल निरूपित करता है एक ______
`("dy")/("d"x) = ("y" + 1)/(x - 1)`, जब y (1) = 2 है के हलों की संख्या है।
`("dy")/("d"x) + "y" = "e"^-x` जब y(0) = 0 का हल है
y = aemx+ be–mx निम्न में से किस अवकल समीकरण को संतुष्ट करता है
`x ("dy")/("d"x) + "y"` = ex का हल है
वक्र कुल y = Ax + A3 उस अवकल समीकरण के तदनुरूपी (संगत) है जिसकी कोटि है
`("dy")/("d"x) = 2x"e"^(x^2 - "y")` का व्यापक हल है
अवकल समीकरण `[1 + (("dy")/("d"x))^2] = ("d"^2"y")/("d"x^2)` की कोटि तथा घात क्रमश: है
कोटि तीन के अवकल समीकरण के व्यापक हल में स्वेच्छ अचरों की संख्या ______ है।
अवकल समीकरण `x("dy")/("d"x) + 2"y" = x^2` का हल ______ है।
अवकल समीकरण `("d"x)/("dy") + "P"_1x = "Q"_1` के समाकलन गुणक को `"e"^(int "P"_1"dy")` से लिखा जाता है।