English

मूल बिंदु से गुजरने वाले वक्र का समीकरण ज्ञात कीजिए यदि इस वक्र के किसी बिंदु (x, y) पर स्पर्श रेखा की प्रवणता इस बिंदु के x निर्देशांक (भुज) तथा y निर्देशांक (कोटि) के अंतर के वर्ग के बराबर है। - Mathematics (गणित)

Advertisements
Advertisements

Question

मूल बिंदु से गुजरने वाले वक्र का समीकरण ज्ञात कीजिए यदि इस वक्र के किसी बिंदु (x, y) पर स्पर्श रेखा की प्रवणता इस बिंदु के x निर्देशांक (भुज) तथा y निर्देशांक (कोटि) के अंतर के वर्ग के बराबर है।

Sum

Solution

यहाँ, वक्र की स्पर्श रेखा का ढलान = `("dy")/("d"x)` और भुज और कोटि के बीच का अंतर = x – y.

∴ प्रतिबंध के अनुसार, `("dy")/("d"x) = (x - "y")^2`

x – y = v रखिए

`1 - ("dy")/("d"x) = "dv"/("d"x)`

∴ `("dy")/("d"x) = 1 - "dv"/"dx"`

∴ समीकरण `1 - "dv"/"dx" = "v"^2` बन जाता है 

⇒ `"dv"/"dx" = 1 - "v"^2`

⇒ `"dv"/(1 - "v"^2)` = dx

दोनों पक्षों का समाकलन करने पर हमें प्राप्त होता है

`int "dv"/(1 - "v"^2) = int "d"x`

⇒ `1/2 log |(1 + "v")/(1 - "v")|` = x + c

⇒ `1/2 log|(1 + x - "y")/(1 - x + "y")|` = x + c  ......(1)

क्योंकि, वक्र (0, 0) से होकर जा रहा है 

Then `1/2 log|(1 + 0 - 0)/(1 - 0 + 0)|` = 0 + c

⇒ c = 0

∴ समीकरण (1) में  c = 0 रखने पर हमें प्राप्त होता है

`1/2 log |(1 + x - "y")/(1 - x + "y")|` = x

⇒ `log|(1 + x - "y")/(1 - x + "y")|` = 2x

∴ `(1 + x - "y")/(1 - x + "y")|` = e2x

⇒  (1 + x – y) = e2x (1 – x + y) 

इसलिए, वाँछित समीकरण (1 + x – y) = e2x (1 – x + y) है।

shaalaa.com
अवकल समीकरण
  Is there an error in this question or solution?
Chapter 9: अवकल समीकरण - प्रश्नावली [Page 190]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 12
Chapter 9 अवकल समीकरण
प्रश्नावली | Q 31 | Page 190

RELATED QUESTIONS

निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`x "dy"/"dx" + y - x + xy cot x = 0 (x ≠ 0)`


निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`(x + y) dy/dx = 1`


निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

y dx + (x – y2)dy = 0


निम्नलिखित अवकल समीकरण में से कोटि एवं घात (यदि परिभाषित हो) ज्ञात कीजिए।

`(d^2y)/dx^2 + 5x(dy/dx)^2 - 6y = log x`


मूल बिंदु से गुजरने वाली सरल रेखाओं के कुल का अवकल समीकरण ज्ञात कीजिए।


`x^2 "dy"/"dx" - x"y" = 1 + cos("y"/x)`, x ≠ 0 तथा जब x = 1 तब y = `pi/2` है को हल कीजिए।


अवकल समीकरण `2x * "dy"/"dx" y` = 3 का हल किस कुल को निरूपित करता है?


परवलयों y2 = 4ax के कुल को निरूपित करने वाले अवकल समीकरण की कोटि ______ है।


F(x, y) = `(sqrt(x^2 + y^2) + y)/x` का घात ______ है।


अवकल समीकरण `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` को हल करने के लिए उपयुक्त प्रतिस्थापन ______ है।


`"dy"/"dx" + "y"` = 5 एक `"dy"/"dx" + "Py"` = Q प्रकार का अवकल समीकरण है परंतु इसे चर पृथक्करणीय विधि से भी हल कर सकते हैं।


दिया है कि `"dy"/"dx" = "e"^-2x` और जब x = 5 तब y = 0 है। जब y = 3 है तब x का मान ज्ञात कीजिए।


अवकल समीकरण `"dy"/"dx" + 2x"y"` = y को हल कीजिए।


अवकल समीकरण  `"dy"/"dx"` = 1 + x + y2 + xy2,  को हल कीजिए जब y = 0, x = 0


`(x + 2"y"^3)  "dy"/"dx"` = y का व्यापक हल ज्ञात कीजिए।


अवकल समीकरण (1 + y2) tan–1xdx + 2y(1 + x2) dy = 0 को हल कीजिए।


केंद्र (1, 2) वाले सभी सकेंद्री वृत्तों के कुल का अवकल समीकरण ज्ञात कीजिए।


बिंदु (2, 1) से जाने वाले उस वक्र का समीकरण ज्ञात कीजिए जिसका किसी भी बिंदु (x, y) पर स्पर्श रेखा की प्रवणता  `(x^2 + "y"^2)/(2x"y")` है।


y = Ax + A3 } द्वारा निरूपित वक्रों के कुल के अवकल समीकरण की घात है


अवकल समीकरण `("d"^2"y")/("d"x^2) + (("dy")/("d"x))^3 + 6"y"^5` = 0 की घात है


अवकल समीकरण `("dy")/("d"x) + "y" tanx - secx` = 0 का समाकलन गुणक है


अवकल समीकरण जिसका एक हल y = acosx + bsinx है


अवकल समीकरण `(("d"^3"y")/("d"x^3))^2 - 3 ("d"^2"y")/("d"x^2) + 2(("dy")/("d"x))^4` = y4 की कोटि तथा घात क्रमश: है


अवकल समीकरण (ex + 1) ydy = (y + 1) exdx का व्यापाक हल है


अवकल समीकरण  `("dy")/("d"x) = "e"^(x - "y") + x^2 "e"^-"y"` का हल है


अवकल समीकरण ydx + (x + xy)dy = 0 का हल ______ है।


`("dy")/("d"x) + "y"` = sinx का व्यापक हल ______ है।


 `("dy")/("d"x) = "f"(x, "y")` जहाँ f (x, y) एक शून्य घात वाला समघातीय फलन है, को हल करने के लिए सही प्रतिस्थापन y = vx है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×