Advertisements
Advertisements
Question
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`x "dy"/"dx" + y - x + xy cot x = 0 (x ≠ 0)`
Solution
दिया गया अवकल समीकरण
`x dy/dx + y - x + xy cot x = 0`
⇒ `x dy/dx + y (1 + x cot x) = x`
या `dy/dx + (1/x + cot x) y = 1` ...(i)
`dy/dx + Py = Q` से तुलना करने पर,
P = `1/x + cot x` और Q = 1
∴ `I.F. = e^(int P dx) = e^(int(1/x + cot x)dx)`
`= e^(log x) + log sin x`
`=> e^(log (x sin x)) = x sin x`
अतः अभीष्ट हल
∴ `y × I.F. = int I.F. xx Q dx + C`
`=> y xx x sin x = int 1 * x sin x dx + C`
`=> xy sin x = - x cos x + int 1 cos x dx + C`
`=> xy sin x = - x cos x + sin x + C`
⇒ `y = (- x cos x)/(x sin x) + (sin x)/(x sin x) + C/(x sin x)`
⇒ `y = 1/x - cot x + C/ (x sin x)`
APPEARS IN
RELATED QUESTIONS
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`dy/dx + y/x + x^2`
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`xdy/dx + 2y = x^2 log x`
मूल बिंदु से गुजरने वाली सरल रेखाओं के कुल का अवकल समीकरण ज्ञात कीजिए।
`x^2 "dy"/"dx" - x"y" = 1 + cos("y"/x)`, x ≠ 0 तथा जब x = 1 तब y = `pi/2` है को हल कीजिए।
अवकल समीकरण `("dy"/"dx")^2 + (("d"^2y)/("d"x^2))^2` = 0 की घात ______ हैं।
अवकल समीकरण `x "dy"/"dx" - y` = sinx का समाकलन गणक ______ है।
अवकल समीकरण `"dy"/"dx" + y/x` = 1 का व्यापक हल ______ है।
अवकल समीकरण `sqrt(1 + ("d"^2y)/("d"x^2)) = x + "dy"/"dx"` की घात परिभाषित नहीं है।
`"dy"/"dx"` = 2y–x का हल ज्ञात कीजिए।
दिया है कि `"dy"/"dx" = "e"^-2x` और जब x = 5 तब y = 0 है। जब y = 3 है तब x का मान ज्ञात कीजिए।
अवकल समीकरण `"dy"/"dx" + 2x"y"` = y को हल कीजिए।
उस वक्र का समीकरण ज्ञात कीजिए जो मूल बिंदु से होकर जाता है और अवकल समीकरण `(1 + x^2) "dy"/"dx" + 2x"y"` = 4x2 को संतुष्ट करता है।
अवकल समीकरण dy = cosx(2 – y cosecx) dx को हल कीजिए, दिया है कि x = `pi/2` तब y = 2 है।
Ax2 + By2 = 1 से A और B को विलुप्त करके अवकल समीकरण बनाइए।
(1 + tany)(dx – dy) + 2xdy = 0 का व्यापक हल ज्ञात कीजिए।
अवकल समीकरण `(("d"^2"y")/("d"x^2))^2 + (("dy")/("d"x))^2 = xsin(("dy")/("d"x))` की घात है
अवकल समीकरण `[1 + (("dy")/("d"x))^2]^(3/2) = ("d"^2"y")/("d"x^2)` की घात है
अवकल समीकरण xdy – ydx = 0 का हल निरूपित करता है एक ______
y = Ax + A3 } द्वारा निरूपित वक्रों के कुल के अवकल समीकरण की घात है
ex cosy dx – ex siny dy = 0 का व्यापक हल है
अवकल समीकरण `("dy")/("d"x) + "y" tanx - secx` = 0 का समाकलन गुणक है
`("dy")/("d"x) = 2x"e"^(x^2 - "y")` का व्यापक हल है
वह वक्र जिसके लिए किसी बिंदु पर स्पर्श रेखा की प्रवणता उस बिंदु के x-अक्ष (भुज) तथा y-अक्ष (कोटि) के अनुपात के बराबर है वह है
अवकल समीकरण जिसका एक हल y = acosx + bsinx है
अवकल समीकरण `("dy")/("d"x) + "y"/x` = sec x का हल है
अवकल समीकरण `sqrt(1 + (("dy")/("d"x))^2)` = x की घात ______ है।
कोटि तीन के अवकल समीकरण के व्यापक हल में स्वेच्छ अचरों की संख्या ______ है।
अवकल समीकरण coty dx = xdy का हल ______ है।
एक तल में सभी अक्षतिज (रेखाएँ जो क्षैतिज नहीं हैं) सरल रेखाओं का अवकल
समीकरण `("d"^2x)/("dy"^2)` = 0 है।