English

निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए- dydxxdydx+y-x+xycotx=0(x≠0) - Mathematics (गणित)

Advertisements
Advertisements

Question

निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`x "dy"/"dx" + y - x + xy cot x = 0 (x ≠ 0)`

Sum

Solution

दिया गया अवकल समीकरण

`x  dy/dx + y - x + xy  cot x = 0`

⇒ `x  dy/dx + y (1 + x  cot x) = x`

या `dy/dx + (1/x + cot x) y = 1`    ...(i)

`dy/dx + Py = Q` से तुलना करने पर,

P = `1/x + cot x` और Q = 1

∴ `I.F. = e^(int P dx) = e^(int(1/x + cot x)dx)`

`= e^(log x) + log sin x`

`=> e^(log (x sin x)) = x sin x`

अतः अभीष्ट हल

∴ `y × I.F. = int I.F. xx Q  dx + C`

`=> y xx x sin x = int 1 * x sin x dx + C`

`=> xy sin x = - x cos x + int 1 cos x dx + C`

`=> xy sin x = - x cos x + sin x + C`

⇒ `y = (- x cos x)/(x sin x) + (sin x)/(x sin x) + C/(x sin x)`

⇒ `y = 1/x - cot x + C/ (x sin x)`

shaalaa.com
अवकल समीकरण
  Is there an error in this question or solution?
Chapter 9: अवकल समीकरण - प्रश्नावली 9.6 [Page 430]

APPEARS IN

NCERT Mathematics - Part 1 and 2 [Hindi] Class 12
Chapter 9 अवकल समीकरण
प्रश्नावली 9.6 | Q 9. | Page 430

RELATED QUESTIONS

निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`dy/dx + y/x + x^2`


निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`xdy/dx + 2y = x^2 log x`


मूल बिंदु से गुजरने वाली सरल रेखाओं के कुल का अवकल समीकरण ज्ञात कीजिए।


`x^2 "dy"/"dx" - x"y" = 1 + cos("y"/x)`, x ≠ 0 तथा जब x = 1 तब y = `pi/2` है को हल कीजिए।


अवकल समीकरण `("dy"/"dx")^2 + (("d"^2y)/("d"x^2))^2` = 0 की घात ______ हैं।


अवकल समीकरण `x "dy"/"dx" - y` = sinx का समाकलन गणक ______ है।


अवकल समीकरण `"dy"/"dx" + y/x` = 1 का व्यापक हल ______ है।


अवकल समीकरण `sqrt(1 + ("d"^2y)/("d"x^2)) = x + "dy"/"dx"` की घात परिभाषित नहीं है।


`"dy"/"dx"` = 2y–x का हल ज्ञात कीजिए।


दिया है कि `"dy"/"dx" = "e"^-2x` और जब x = 5 तब y = 0 है। जब y = 3 है तब x का मान ज्ञात कीजिए।


अवकल समीकरण `"dy"/"dx" + 2x"y"` = y को हल कीजिए।


उस वक्र का समीकरण ज्ञात कीजिए जो मूल बिंदु से होकर जाता है और अवकल समीकरण `(1 + x^2) "dy"/"dx" + 2x"y"` = 4x2 को संतुष्ट करता है।


अवकल समीकरण dy = cosx(2 – y cosecx) dx को हल कीजिए, दिया है कि x = `pi/2` तब y = 2 है।


Ax2 + By2 = 1 से A और B को विलुप्त करके अवकल समीकरण बनाइए।


(1 + tany)(dx – dy) + 2xdy = 0 का व्यापक हल ज्ञात कीजिए।


अवकल समीकरण `(("d"^2"y")/("d"x^2))^2 + (("dy")/("d"x))^2 = xsin(("dy")/("d"x))` की घात है


अवकल समीकरण `[1 + (("dy")/("d"x))^2]^(3/2) = ("d"^2"y")/("d"x^2)` की घात है


अवकल समीकरण xdy – ydx = 0 का हल निरूपित करता है एक ______


y = Ax + A3 } द्वारा निरूपित वक्रों के कुल के अवकल समीकरण की घात है


ex cosy dx – ex siny dy = 0 का व्यापक हल है


अवकल समीकरण `("dy")/("d"x) + "y" tanx - secx` = 0 का समाकलन गुणक है


`("dy")/("d"x) = 2x"e"^(x^2 - "y")` का व्यापक हल है


वह वक्र जिसके लिए किसी बिंदु पर स्पर्श रेखा की प्रवणता उस बिंदु के x-अक्ष (भुज) तथा y-अक्ष (कोटि) के अनुपात के बराबर है वह है


अवकल समीकरण जिसका एक हल y = acosx + bsinx है


अवकल समीकरण `("dy")/("d"x) + "y"/x` = sec x का हल है


अवकल समीकरण `sqrt(1 + (("dy")/("d"x))^2)` = x की घात ______ है।


कोटि तीन के अवकल समीकरण के व्यापक हल में स्वेच्छ अचरों की संख्या ______ है।


अवकल समीकरण coty dx = xdy का हल ______ है।


एक तल में सभी अक्षतिज (रेखाएँ जो क्षैतिज नहीं हैं) सरल रेखाओं का अवकल

समीकरण `("d"^2x)/("dy"^2)` = 0 है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×