Advertisements
Advertisements
Question
अवकल समीकरण dy = cosx(2 – y cosecx) dx को हल कीजिए, दिया है कि x = `pi/2` तब y = 2 है।
Solution
दिया गया अवकल समीकरण dy = cosx(2 – y cosecx) dx है।
⇒ `"dy"/"dx"` = cosx(2 – y cosec x)
⇒ `"dy"/"dx"` = 2cosx – ycosx . cosecx
⇒ `"dy"/"dx"` = 2cosx – ycotx
⇒ `"dy"/"dx" + "y" cot "x"` = 2cosx
यहाँ, P = cotx और Q = 2cosx
∴ समाकलन गुणक I.F. = `"e"^(int"Pdx")`
= `"e"^(int cot x"d"x)`
= `"e"^(log sinx)`
= sin x
∴ वाँछित हल `"y" xx "I"."F" = int "Q" xx "I"."F". "d"x + "c"` है।
⇒ `"y" . sin x = int 2 cos x . sin x "d"x + "c"`
⇒ `"y" . sin x = int sin 2x "d"x + "c"`
⇒ `"y" . sin x = - 1/2 cos 2x + "c"`
x = `pi/2` तथा y = 2 रखने पर हमें प्राप्त होता है
`2 sin pi/2 = - 1/2 cos pi + "c"`
⇒ 2(1) = `- 1/2 (-1) + "c"`
⇒ 2 = `1/2 + "c"`
⇒ c = `2 - 1/2 = 3/2`
∴ समीकरण y sin x = `- 1/2 cos 2x + 3/2` है।
APPEARS IN
RELATED QUESTIONS
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`cos^2 x dy/dx + y = tan x (0 <= x < pi/2)`
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`x "dy"/"dx" + y - x + xy cot x = 0 (x ≠ 0)`
निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए-
`(1 + x^2) dy/dx + 2xy = 1/(1 + x^2); y = 0` यदि x = 1
निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए-
`dy/dx - 3 y cot x = sin 2x; y = 2` यदि x = `pi/2`
अवकल समीकरण `(1 - y^2) dy/dx + yx = ay (-1 < y < 1)` का समाकलन गुणक है:
निम्नलिखित अवकल समीकरण में से कोटि एवं घात (यदि परिभाषित हो) ज्ञात कीजिए।
`(d^2y)/dx^2 + 5x(dy/dx)^2 - 6y = log x`
अवकल समीकरण `"dy"/"dx" + y/x` = x2 को हल कीजिए।
मूल बिंदु से गुजरने वाली सरल रेखाओं के कुल का अवकल समीकरण ज्ञात कीजिए।
बिंदु 1,`pi/4` से जाने वाले वक् का समीकरण ज्ञात कीजिए यदि किसी बिंदु P (x, y) पर वक्र की स्पर्श रेखा की प्रवणता `"y"/x - cos^2"y"/x` है।
अवकल समीकरण `(1 + "dy"/"dx")^3 = (("d"^2y)/("d"x^2))^2` की घात है
अवकल समीकरण `"dy"/"dx" (x log x) + y` = 2logx का समाकलन गुणक है
अवकल समीकरण `"dy"/"dx" + y/x` = 1 का व्यापक हल ______ है।
दीर्घ वृत्तों जिनका केंद्र मूल बिंदु पर तथा नाभियाँ x-अक्ष पर हैं को निरूपित करने वाले अवकल समीकरण की कोटि 2 है।
F(x, y) = `("y"cos("y"/x) + x)/(xcos("y"/x))` समघातीय फलन नहीं है।
F(x, y) = `(x^2 + y^2)/(x - y)` कोटि 1 का समघातीय फलन है।
दिया है कि `"dy"/"dx" = "e"^-2x` और जब x = 5 तब y = 0 है। जब y = 3 है तब x का मान ज्ञात कीजिए।
अवकल समीकरण `"dy"/"dx" + 2x"y"` = y को हल कीजिए।
यदि `(1 + "t")"dy"/"dt" - "ty"` = 1 का y(t) एक हल है और y(0) = – 1 है तो दिखाइए कि y(1) = `-1/2`
उस वक्र का समीकरण ज्ञात कीजिए जो मूल बिंदु से होकर जाता है और अवकल समीकरण `(1 + x^2) "dy"/"dx" + 2x"y"` = 4x2 को संतुष्ट करता है।
केंद्र (1, 2) वाले सभी सकेंद्री वृत्तों के कुल का अवकल समीकरण ज्ञात कीजिए।
बिंदु (1, 1) से गुजरने वाले उस वक्र का समीकरण ज्ञात कीजिए जिसके किसी बिंदु P (x, y) से खींची गई स्पर्श रेखा, निर्देशांक अक्षों से A और B पर इस प्रकार मिलती है कि AB का मध्य बिंदु P है।
y = Acos αx + Bsin αx जहाँ A और B स्वेछ अचर हैं के लिए अवकल समीकरण है
y = Ax + A3 } द्वारा निरूपित वक्रों के कुल के अवकल समीकरण की घात है
`("dy")/("d"x) - "y"` = 1 का हल जब, y(0) = 1 है
अवकल समीकरण `[1 + (("dy")/("d"x))^2] = ("d"^2"y")/("d"x^2)` की कोटि तथा घात क्रमश: है
`("dy")/("d"x) + "y"tanx = secx` व्यापक हल है
अवकल समीकरण (ex + 1) ydy = (y + 1) exdx का व्यापाक हल है
`("dy")/("d"x) + "y"/(xlogx) = 1/x` इस ______ प्रकार का समीकरण है।
अवकल समीकरण `x("dy")/("d"x) + 2"y" = x^2` का हल ______ है।
द्वितीय कोटि के अवकल समीकरण के विशिष्ट हल में स्वेच्छ अचरों की संख्या ं
दो होती है।