English

अवकल समीकरण dydxdydx = 1 + x + y2 + xy2, को हल कीजिए जब y = 0, x = 0 - Mathematics (गणित)

Advertisements
Advertisements

Question

अवकल समीकरण  `"dy"/"dx"` = 1 + x + y2 + xy2,  को हल कीजिए जब y = 0, x = 0

Sum

Solution

दिया गया समीकरण `"dy"/"dx"` = 1 + x + y2 + xy2 है।

⇒ `"dy"/"dx"` = 1(1 + x) + y2(1 + x)

⇒ `"dy"/"dx"` = (1 + x)(1 + y2)

⇒ `"dy"/(1 + "y"^2)` = (1 + x)dx

दोनों पक्षों को जोड़ने पर, हम प्राप्त करते हैं

`int "dy"/(1 + "y"^2) = int(1 + x)"d"x`

⇒ `tan^-1"y" = x + x^2/2 + "c"`

x = 0 और y = 0 रखिए

हमें प्राप्त होता है tan–1(0) = 0 + 0 + c

⇒ c = 0

∴ tan–1y = `x + x^2/2`

⇒ y = `tan(x + x^2/2)`

अत: वाँछित हल y = `tan(x + x^2/2)` है।

shaalaa.com
अवकल समीकरण
  Is there an error in this question or solution?
Chapter 9: अवकल समीकरण - प्रश्नावली [Page 189]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 12
Chapter 9 अवकल समीकरण
प्रश्नावली | Q 9 | Page 189

RELATED QUESTIONS

निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`x log x dy/dx + y = 2/x log x`


निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`x "dy"/"dx" + y - x + xy cot x = 0 (x ≠ 0)`


अवकल समीकरण x`dy/dx - y = 2x^2` का समाकलन गुणक है:


अवकल समीकरण `"dy"/"dx"` = yex,  x = 0, y = e में y का मान बताएं जब x = 1


अवकल समीकरण `"dy"/"dx" + y/x` = x2 को हल कीजिए।


अवकल समीकरण `"dy"/"dx" (x log x) + y` = 2logx का समाकलन गुणक है


निम्न में से कौन सा x और y में समघातीय फलन नहीं है।


अवकल समीकरण `x "dt"/"dx" + 2"y"` = x2 का हल है


अवकल समीकरण `("dy"/"dx")^2 + (("d"^2y)/("d"x^2))^2` = 0 की घात ______ हैं।


अवकल समीकरण  `"dy"/"dx" = "e"^(x - y)` का व्यापक हल ______ है।


अवकल समीकरण `"dy"/"dx" + y/x` = 1 का व्यापक हल ______ है।


F(x, y) = `("y"cos("y"/x) + x)/(xcos("y"/x))` समघातीय फलन नहीं है।


अवकल समीकरण `"dy"/"dx" + "y" sec x` = tan x का व्यापक हल y(secx – tanx) = secx – tanx + x + k है।


अवकल समीकरण `(x^2 - 1) "dy"/"dx" + 2x"y" = 1/(x^2 - 1)` को हल कीजिए।


अवकल समीकरण `"dy"/"dx" + 2x"y"` = y को हल कीजिए।


यदि y (x) समीकरण `((2 + sinx)/(1 + "y"))"dy"/"dx"` = – cosx  का हल है और y (0) = 1, है तब  `"y"(pi/2)` का मान ज्ञात कीजिए।


Ax2 + By2 = 1 से A और B को विलुप्त करके अवकल समीकरण बनाइए।


`"y" + "d"/("d"x) (x"y") = x(sinx + logx)` को हल कीजिए।


`("dy")/("d"x) = cos(x + "y") + sin(x + "y")` को हल कीजिए [संकेत : x + y = z रखिए]


अवकल समीकरण `[1 + (("dy")/("d"x))^2]^(3/2) = ("d"^2"y")/("d"x^2)` की घात है


अवकल समीकरण xdy – ydx = 0 का हल निरूपित करता है एक ______


अवकल समीकरण `(1 - x^2) ("dy")/("d"x) - x"y"` = 1 का समाकलन गुणक है


tan–1 x + tan–1 y = c किस अवकल समीकरण का व्यापक हल है?


`x ("dy")/("d"x) + "y"` = ex का हल है


अवकल समीकरण जिसका एक हल y = acosx + bsinx है


अवकल समीकरण `x("dy")/("d"x) + 2"y" = x^2` का हल ______ है।


`("dy")/("d"x) + "y"` = sinx का व्यापक हल ______ है।


वक्रों के कुल y = ex (Acosx + Bsinx)  को निरूपित करने वाला अवकल समीकरण `("d"^2"y")/("d"x^2) - 2 ("dy")/("d"x) + 2"y"` = 0  है।


एक तल में सभी अक्षतिज (रेखाएँ जो क्षैतिज नहीं हैं) सरल रेखाओं का अवकल

समीकरण `("d"^2x)/("dy"^2)` = 0 है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×