English

अवकल समीकरण dtdxyxdtdx+2y = x2 का हल है - Mathematics (गणित)

Advertisements
Advertisements

Question

अवकल समीकरण `x "dt"/"dx" + 2"y"` = x2 का हल है

Options

  • y = `(x^2 + "c")/(4x^2)`

  • y = `x^2/4 + "c"`

  • y = `(x^4 + "c")/x^2`

  • y = `(x^4 + "c")/(4x^2)`

MCQ

Solution

सही उत्तर `underline("y" = (x^4 + "c")/(4x^2))` है। 

व्याख्या:

I.F. = `"e"^(int 2/x  "d"x) = "e"^(2logx)`

= `"e"^(logx^2)`

= x2.

इसलिए इसका हल है y.

x2 = `int x^2 * x "d"x`

= `x^4/4 + "k"`,

अर्थात्‌ y = `(x^4 + "c")/(4x^2)`.

shaalaa.com
अवकल समीकरण
  Is there an error in this question or solution?
Chapter 9: अवकल समीकरण - हल किये हुए उदाहरण [Page 184]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 12
Chapter 9 अवकल समीकरण
हल किये हुए उदाहरण | Q 21 | Page 184

RELATED QUESTIONS

निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए।

(x + y) dy + (x – y) dx = 0; y = 1; यदि x = 1


वक्रों के कुल y = Ae2x + B.e–2x के लिए अवकल समीकरण ज्ञात कीजिए।


मूल बिंदु से गुजरने वाली सरल रेखाओं के कुल का अवकल समीकरण ज्ञात कीजिए।


उस वक्र का समीकरण ज्ञात कीजिए जिसके मूल बिंदु के अतिरिक्त किसी अन्य बिंदु पर स्पर्श रेखा की प्रवणता `"y" + "y"/x` है।


बिंदु (1, 1) से गुजरने वाले एक ऐसे वक्र का समीकरण ज्ञात कौजिए जिसका किसी बिंदु P(x, y) से वक्र के अभिलंब की मूल बिंदु से लंबवत दूरी P से x-अक्ष की दूरी के बराबर है।


बताइए कि समीकरण xdy – ydx = `sqrt(x^2 + "y"^2)  "d"x` किस प्रकार का अवकल समीकरण है तथा इसे हल कीजिए। 


अवकल समीकरण `[1 + ("dy"/"dx")^2]^2 = ("d"^2y)/("d"x^2)`  के क्रमशः कोटि और घात हैं


निम्न में से कौन सा x और y में समघातीय फलन नहीं है।


अवकल समीकरण `"dx"/x + "dy"/y` = 0 का हल है


अवकल समीकरण  `"dy"/"dx" = "e"^(x - y)` का व्यापक हल ______ है।


जब `("e"^(-2sqrt(x))/sqrt(x) - y/sqrt(x))("d"x)/("d"y) = 1(x ≠ 0)` को `"dy"/"dx" + "P"y` = Q, के रूप में लिखते हैं तब P = ______ है।


अवकल समीकरण `"dy"/"dx" + "y" sec x` = tan x का व्यापक हल y(secx – tanx) = secx – tanx + x + k है।


अवकल समीकरण `(x^2 - 1) "dy"/"dx" + 2x"y" = 1/(x^2 - 1)` को हल कीजिए।


यदि y (x) समीकरण `((2 + sinx)/(1 + "y"))"dy"/"dx"` = – cosx  का हल है और y (0) = 1, है तब  `"y"(pi/2)` का मान ज्ञात कीजिए।


उस वक्र का समीकरण ज्ञात कीजिए जो मूल बिंदु से होकर जाता है और अवकल समीकरण `(1 + x^2) "dy"/"dx" + 2x"y"` = 4x2 को संतुष्ट करता है।


अवकल समीकरण `(1 + y^2) + (x - "e"^(tan - 1y)) "dy"/"dx"` = 0 का व्यापक हल ज्ञात कीजिए।


Ax2 + By2 = 1 से A और B को विलुप्त करके अवकल समीकरण बनाइए।


अवकल समीकरण xdy – ydx = 0 का हल निरूपित करता है एक ______


`("dy")/("d"x) = 2x"e"^(x^2 - "y")` का व्यापक हल है


वह वक्र जिसके लिए किसी बिंदु पर स्पर्श रेखा की प्रवणता उस बिंदु के x-अक्ष (भुज) तथा y-अक्ष (कोटि) के अनुपात के बराबर है वह है


अवकल समीकरण  `("dy")/("d"x) = "e"^(x^2/2) + x"y"` का व्यापक हल है


समीकरण (2y – 1)dx – (2x + 3)dy = 0 का हल है


`("dy")/("d"x) + "y" = "e"^-x`, y(0) = 0 का हल है


वक्र कुल  y2 = 4a(x + a) का अवकल समीकरण है


अवकल समीकरण ydx + (x + xy)dy = 0 का हल ______ है।


द्वितीय कोटि के अवकल समीकरण के विशिष्ट हल में स्वेच्छ अचरों की संख्या ं

दो होती है।


वृत्तों के कुल x2 + (y – a)2 = aको निरूपित करने वाले अवकल समीकरण की कोटि दो होगी।


`("dy")/("d"x) = ("y"/x)^(1/3)` का हल  `"y"^(2/3) - x^(2/3)` = c है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×