English

वक्र कुल y2 = 4a(x + a) का अवकल समीकरण है - Mathematics (गणित)

Advertisements
Advertisements

Question

वक्र कुल  y2 = 4a(x + a) का अवकल समीकरण है

Options

  • `"y"^2 - 4 ("dy")/("d"x)(x + ("dy")/("d"x))`

  • `2"y" ("dy")/("d"x)` = 4a

  • `"y" ("d"^2"y")/("d"x^2) + (("dy")/("d"x))^2` = 0

  • `2x ("dy")/("d"x) + "y"(("dy")/("d"x))^2 - "y"`

MCQ

Solution

सही उत्तर `underline(2x ("dy")/("d"x) + "y"(("dy")/("d"x))^2 - "y")` है।

व्याख्या:

वक्रों के कुल का दिया गया समीकरण y2 = 4a(x + a) है।

⇒ y2 = 4ax + 4a  .......(1)

दोनों पक्षों का x के सापेक्ष अवकलन करने पर

`2"y" * ("dy")/("d"x)` = 4a

⇒ `"y" * ("dy")/("d"x)` = 2a

⇒ `"y"/2 ("dy")/("d"x)` = a

अब, a का मान समीकरण (1) में रखने पर हमें प्राप्त होता है

`"y"^2 = 4x("y"/2 ("dy")/("d"x)) + 4("y"/2 * ("dy")/("d"x))^2`

⇒ `"y"^2 = 2x"y" ("dy")/("d"x) + "y"^2 (("dy")/("d"x))^2`

⇒ y = `2x ("dy")/("d"x) + "y"(("dy")/("d"x))^2`

⇒ `2x * ("dy")/("d"x) + "y" * (("dy")/("d"x))^2 - "y"` = 0

shaalaa.com
अवकल समीकरण
  Is there an error in this question or solution?
Chapter 9: अवकल समीकरण - प्रश्नावली [Page 195]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 12
Chapter 9 अवकल समीकरण
प्रश्नावली | Q 69 | Page 195

RELATED QUESTIONS

निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`dy/dx + 3y = e^(- 2x)`


निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`xdy/dx + 2y = x^2 log x`


निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`x log x dy/dx + y = 2/x log x`


वक्रों के कुल y = Ae2x + B.e–2x के लिए अवकल समीकरण ज्ञात कीजिए।


एक तल में सभी अक्षैतिज रेखाओं का अवकल समीकरण ज्ञात कीजिए। 


दी गई त्रिज्या a के सभी वृत्तों के अवकल समीकरण की कोटि है


अवकल समीकरण `("dy"/"dx")^2 - x "dy"/"dx" + "y"` = 0 का एक हल है


निम्न में से कौन सा x और y में समघातीय फलन नहीं है।


अवकल समीकरण `x "dt"/"dx" + 2"y"` = x2 का हल है


अवकल समीकरण  `"dy"/"dx" = "e"^(x - y)` का व्यापक हल ______ है।


दीर्घ वृत्तों जिनका केंद्र मूल बिंदु पर तथा नाभियाँ x-अक्ष पर हैं को निरूपित करने वाले अवकल समीकरण की कोटि 2 है।


अवकल समीकरण `sqrt(1 + ("d"^2y)/("d"x^2)) = x + "dy"/"dx"` की घात परिभाषित नहीं है।


F(x, y) = `("y"cos("y"/x) + x)/(xcos("y"/x))` समघातीय फलन नहीं है।


अवकल समीकरण `("d"^2"y")/("d"x^2) - x^2 "dy"/"dx" + x"y"` = x का एक विशिष्ट हल y = x है।


यदि `(1 + "t")"dy"/"dt" - "ty"` = 1 का  y(t) एक हल है और y(0) = – 1 है तो दिखाइए कि y(1) = `-1/2`


y2dx + (x2 – xy + y2) dy = 0 का व्यापक हल ज्ञात कीजिए।


`2("y" + 3) - x"y" "dy"/"dx"` = 0 को हल कीजिए जबकि y (1) = – 2 दिया है।


`("dy")/("d"x) -3"y" = sin2x` का व्यापक हल ज्ञात कीजिए।


मूल बिंदु से गुजरने वाले वक्र का समीकरण ज्ञात कीजिए यदि इस वक्र के किसी बिंदु (x, y) पर स्पर्श रेखा की प्रवणता इस बिंदु के x निर्देशांक (भुज) तथा y निर्देशांक (कोटि) के अंतर के वर्ग के बराबर है।


अवकल समीकरण `cosx ("dy")/("d"x) + "y"sinx` = 1 का समाकलन गुणक है।


अवकल समीकरण `(1 - x^2) ("dy")/("d"x) - x"y"` = 1 का समाकलन गुणक है


tan–1 x + tan–1 y = c किस अवकल समीकरण का व्यापक हल है?


अवकल समीकरण `("dy")/("d"x) + "y" = (1 + "y")/x` का समाकलन गुणक है


`x ("dy")/("d"x) + "y"` = ex का हल है


वक्र कुल y = Ax + A3 उस अवकल समीकरण के तदनुरूपी (संगत) है जिसकी कोटि है


अवकल समीकरण `[1 + (("dy")/("d"x))^2] = ("d"^2"y")/("d"x^2)` की कोटि तथा घात क्रमश: है


अवकल समीकरण (ex + 1) ydy = (y + 1) exdx का व्यापाक हल है


अवकल समीकरण `("d"^2"y")/("d"x^2) + "e"^(("dy")/("d"x))` = 0 की घात ______ है।


अवकल समीकरण `sqrt(1 + (("dy")/("d"x))^2)` = x की घात ______ है।


`("dy")/("d"x) + "y"` = sinx का व्यापक हल ______ है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×