Advertisements
Advertisements
Question
वक्र कुल y2 = 4a(x + a) का अवकल समीकरण है
Options
`"y"^2 - 4 ("dy")/("d"x)(x + ("dy")/("d"x))`
`2"y" ("dy")/("d"x)` = 4a
`"y" ("d"^2"y")/("d"x^2) + (("dy")/("d"x))^2` = 0
`2x ("dy")/("d"x) + "y"(("dy")/("d"x))^2 - "y"`
Solution
सही उत्तर `underline(2x ("dy")/("d"x) + "y"(("dy")/("d"x))^2 - "y")` है।
व्याख्या:
वक्रों के कुल का दिया गया समीकरण y2 = 4a(x + a) है।
⇒ y2 = 4ax + 4a2 .......(1)
दोनों पक्षों का x के सापेक्ष अवकलन करने पर
`2"y" * ("dy")/("d"x)` = 4a
⇒ `"y" * ("dy")/("d"x)` = 2a
⇒ `"y"/2 ("dy")/("d"x)` = a
अब, a का मान समीकरण (1) में रखने पर हमें प्राप्त होता है
`"y"^2 = 4x("y"/2 ("dy")/("d"x)) + 4("y"/2 * ("dy")/("d"x))^2`
⇒ `"y"^2 = 2x"y" ("dy")/("d"x) + "y"^2 (("dy")/("d"x))^2`
⇒ y = `2x ("dy")/("d"x) + "y"(("dy")/("d"x))^2`
⇒ `2x * ("dy")/("d"x) + "y" * (("dy")/("d"x))^2 - "y"` = 0
APPEARS IN
RELATED QUESTIONS
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`dy/dx + 3y = e^(- 2x)`
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`xdy/dx + 2y = x^2 log x`
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`x log x dy/dx + y = 2/x log x`
वक्रों के कुल y = Ae2x + B.e–2x के लिए अवकल समीकरण ज्ञात कीजिए।
एक तल में सभी अक्षैतिज रेखाओं का अवकल समीकरण ज्ञात कीजिए।
दी गई त्रिज्या a के सभी वृत्तों के अवकल समीकरण की कोटि है
अवकल समीकरण `("dy"/"dx")^2 - x "dy"/"dx" + "y"` = 0 का एक हल है
निम्न में से कौन सा x और y में समघातीय फलन नहीं है।
अवकल समीकरण `x "dt"/"dx" + 2"y"` = x2 का हल है
अवकल समीकरण `"dy"/"dx" = "e"^(x - y)` का व्यापक हल ______ है।
दीर्घ वृत्तों जिनका केंद्र मूल बिंदु पर तथा नाभियाँ x-अक्ष पर हैं को निरूपित करने वाले अवकल समीकरण की कोटि 2 है।
अवकल समीकरण `sqrt(1 + ("d"^2y)/("d"x^2)) = x + "dy"/"dx"` की घात परिभाषित नहीं है।
F(x, y) = `("y"cos("y"/x) + x)/(xcos("y"/x))` समघातीय फलन नहीं है।
अवकल समीकरण `("d"^2"y")/("d"x^2) - x^2 "dy"/"dx" + x"y"` = x का एक विशिष्ट हल y = x है।
यदि `(1 + "t")"dy"/"dt" - "ty"` = 1 का y(t) एक हल है और y(0) = – 1 है तो दिखाइए कि y(1) = `-1/2`
y2dx + (x2 – xy + y2) dy = 0 का व्यापक हल ज्ञात कीजिए।
`2("y" + 3) - x"y" "dy"/"dx"` = 0 को हल कीजिए जबकि y (1) = – 2 दिया है।
`("dy")/("d"x) -3"y" = sin2x` का व्यापक हल ज्ञात कीजिए।
मूल बिंदु से गुजरने वाले वक्र का समीकरण ज्ञात कीजिए यदि इस वक्र के किसी बिंदु (x, y) पर स्पर्श रेखा की प्रवणता इस बिंदु के x निर्देशांक (भुज) तथा y निर्देशांक (कोटि) के अंतर के वर्ग के बराबर है।
अवकल समीकरण `cosx ("dy")/("d"x) + "y"sinx` = 1 का समाकलन गुणक है।
अवकल समीकरण `(1 - x^2) ("dy")/("d"x) - x"y"` = 1 का समाकलन गुणक है
tan–1 x + tan–1 y = c किस अवकल समीकरण का व्यापक हल है?
अवकल समीकरण `("dy")/("d"x) + "y" = (1 + "y")/x` का समाकलन गुणक है
`x ("dy")/("d"x) + "y"` = ex का हल है
वक्र कुल y = Ax + A3 उस अवकल समीकरण के तदनुरूपी (संगत) है जिसकी कोटि है
अवकल समीकरण `[1 + (("dy")/("d"x))^2] = ("d"^2"y")/("d"x^2)` की कोटि तथा घात क्रमश: है
अवकल समीकरण (ex + 1) ydy = (y + 1) exdx का व्यापाक हल है
अवकल समीकरण `("d"^2"y")/("d"x^2) + "e"^(("dy")/("d"x))` = 0 की घात ______ है।
अवकल समीकरण `sqrt(1 + (("dy")/("d"x))^2)` = x की घात ______ है।
`("dy")/("d"x) + "y"` = sinx का व्यापक हल ______ है।