English

Dyddydyd2ydx2-2dydx+y = 0 का निम्त में से कौन सा व्यापक हल है - Mathematics (गणित)

Advertisements
Advertisements

Question

`("d"^2"y")/("d"x^2) - 2 ("dy")/("d"x) + "y"` = 0 का निम्त में से कौन सा व्यापक हल है

Options

  • y = (Ax + B)ex

  • y = (Ax + B)e–x

  • y = Aex + Be–x

  • y = Acosx + Bsinx

MCQ

Solution

सही उत्तर y = (Ax + B)ex है।

व्याख्या:

दिया गया अवकल समीकरण `("d"^2"y")/("d"x^2) - 2 ("dy")/("d"x) + "y"` = 0 है।

क्योंकि उपरोक्त समीकरण द्वितीय कोटि और प्रथम घात का है

∴ `"D"^2"y" - 2"Dy" + "y"` = 0

जहाँ D = `"d"/("d"x)`

⇒ `("D"^2 - 2"D" + 1)"y"` = 0

∴ सहायक समीकरण m2 – 2m + 1 = 0 है।

⇒ (m – 1)2 = 0

⇒ m = 1, 1

यदि सहायक समीकरण के मूल वास्तविक और समान हैं, तो मान लीजिए (m)

तब CF = `("c"_1 + "c"_2) . "e"^("m"x)`

∴ CF = `("A"x + "B")"e"^x`

तो y = `("A"x + "B")."e"^x`

shaalaa.com
अवकल समीकरण
  Is there an error in this question or solution?
Chapter 9: अवकल समीकरण - प्रश्नावली [Page 196]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 12
Chapter 9 अवकल समीकरण
प्रश्नावली | Q 70 | Page 196

RELATED QUESTIONS

निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`x log x dy/dx + y = 2/x log x`


निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए-

`dy/dx - 3 y cot x = sin 2x; y = 2` यदि x = `pi/2`


अवकल समीकरण `(1 - y^2)  dy/dx + yx = ay (-1 < y < 1)` का समाकलन गुणक है:


दी गई त्रिज्या a के सभी वृत्तों के अवकल समीकरण की कोटि है


अवकल समीकरण `"dy"/"dx" (x log x) + y` = 2logx का समाकलन गुणक है


अवकल समीकरण `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` को हल करने के लिए उपयुक्त प्रतिस्थापन ______ है।


अवकल समीकरण  `"dy"/"dx" = "e"^(x - y)` का व्यापक हल ______ है।


अवकल समीकरण `"dy"/"dx" - y` = cos x is ex का समाकलन गुणक ex है।


अवकल समीकरण `"dy"/"dx" + "y" sec x` = tan x का व्यापक हल y(secx – tanx) = secx – tanx + x + k है।


अवकल समीकरण `"y"^2 "dy"/"dx" + "y"^2 + 1` = 0 का एक हल x + y = tan–1y है।


एक तल में सभी रेखाएँ जो ऊर्ध्वाधर नहीं हैं के लिए अवकल समीकरण ज्ञात कीजिए।


`"dy"/"dx" + "a"y` = emx का व्यापक हल ज्ञात कीजिए।


अवकल समीकरण  `"dy"/"dx"` = 1 + x + y2 + xy2,  को हल कीजिए जब y = 0, x = 0


यदि y (x) समीकरण `((2 + sinx)/(1 + "y"))"dy"/"dx"` = – cosx  का हल है और y (0) = 1, है तब  `"y"(pi/2)` का मान ज्ञात कीजिए।


अवकल समीकरण `(1 + y^2) + (x - "e"^(tan - 1y)) "dy"/"dx"` = 0 का व्यापक हल ज्ञात कीजिए।


`("dy")/("d"x) = cos(x + "y") + sin(x + "y")` को हल कीजिए [संकेत : x + y = z रखिए]


अवकल समीकरण `(("d"^2"y")/("d"x^2))^2 + (("dy")/("d"x))^2 = xsin(("dy")/("d"x))` की घात है


tan–1 x + tan–1 y = c किस अवकल समीकरण का व्यापक हल है?


अवकल समीकरण `("dy")/("d"x) + "y" tanx - secx` = 0 का समाकलन गुणक है


वह वक्र जिसके लिए किसी बिंदु पर स्पर्श रेखा की प्रवणता उस बिंदु के x-अक्ष (भुज) तथा y-अक्ष (कोटि) के अनुपात के बराबर है वह है


अवकल समीकरण जिसका एक हल y = acosx + bsinx है


`("dy")/("d"x) + "y" = "e"^-x`, y(0) = 0 का हल है


`("dy")/("d"x) + "y"tanx = secx` व्यापक हल है


अवकल समीकरण `("dy")/("d"x) + "y"/x` = sec x का हल है


अवकल समीकरण `x("dy")/("d"x) + 2"y" = x^2` का हल ______ है।


`(1 + x^2) ("dy")/("d"x) + 2x"y" - 4x^2` = 0 का हल ______ है।


`("dy")/("d"x) + "y" = (1 + "y")/x` का समाकलन गुणक ______ है।


वृत्तों के कुल x2 + (y – a)2 = aको निरूपित करने वाले अवकल समीकरण की कोटि दो होगी।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×