English

उस वक्र का समीकरण ज्ञात कीजिए जिसके मूल बिंदु के अतिरिक्त किसी अन्य बिंदु पर स्पर्श रेखा की प्रवणता yyy+yx है। - Mathematics (गणित)

Advertisements
Advertisements

Question

उस वक्र का समीकरण ज्ञात कीजिए जिसके मूल बिंदु के अतिरिक्त किसी अन्य बिंदु पर स्पर्श रेखा की प्रवणता `"y" + "y"/x` है।

Sum

Solution

दिया है `"dy"/"dx" = "y" + "y"/x`

= `"y"(1 + 1/x)`

⇒ `"dy"/"y" = (1 + 1/x)"d"x`

दोनों पक्षों का समाकलन करने पर हमें प्राप्त होता है

logy = x + logx + c

⇒ `log("y"/x)` = x + c

⇒ `"y"/x = "e"^(x + "c") `

= `"e"^x * "e"^"c"`

⇒ `"y"/x` = k . ex

⇒ y = kx . ex

shaalaa.com
अवकल समीकरण
  Is there an error in this question or solution?
Chapter 9: अवकल समीकरण - हल किये हुए उदाहरण [Page 168]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 12
Chapter 9 अवकल समीकरण
हल किये हुए उदाहरण | Q 7 | Page 168

RELATED QUESTIONS

निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`dy/dx + (sec x)y = tan x (0 <= x <= pi/2)`


निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`xdy/dx + 2y = x^2 log x`


निम्नलिखित अवकल समीकरण में से कोटि एवं घात (यदि परिभाषित हो) ज्ञात कीजिए।

`(d^2y)/dx^2 + 5x(dy/dx)^2 - 6y = log x`


अवकल समीकरण `"dy"/"dx" = y/x` का व्यापक हल ज्ञात कीजिए।


एक तल में सभी अक्षैतिज रेखाओं का अवकल समीकरण ज्ञात कीजिए। 


अवकल समीकरण `(1 + "dy"/"dx")^3 = (("d"^2y)/("d"x^2))^2` की घात है


अवकल समीकरण `("d"^2y)/("d"x^2) + 3("dy"/"dx")^2 = x^2 log(("d"^2y)/("d"x^2))` की घात है


दी गई त्रिज्या a के सभी वृत्तों के अवकल समीकरण की कोटि है


अवकल समीकरण tan x dx + tan y dy = 0 के विशिष्ट हल में स्वेच्छ अचरों की संख्या ______ है।


अवकल समीकरण `x "dy"/"dx" - y` = sinx का समाकलन गणक ______ है।


अवकल समीकरण  `"dy"/"dx" = "e"^(x - y)` का व्यापक हल ______ है।


अवकल समीकरण `(x^2 - 1) "dy"/"dx" + 2x"y" = 1/(x^2 - 1)` को हल कीजिए।


अवकल समीकरण `"dy"/"dx" + 2x"y"` = y को हल कीजिए।


`"dy"/"dx" + "a"y` = emx का व्यापक हल ज्ञात कीजिए।


उस वक्र का समीकरण ज्ञात कीजिए जो मूल बिंदु से होकर जाता है और अवकल समीकरण `(1 + x^2) "dy"/"dx" + 2x"y"` = 4x2 को संतुष्ट करता है।


y2dx + (x2 – xy + y2) dy = 0 का व्यापक हल ज्ञात कीजिए।


बिंदु (1, 0) से जाने वाले उस वक्र का समीकरण ज्ञात कीजिए जिसके किसी भी बिंदु (x, y) पर स्पर्श रेखा की प्रवणता `("y" - 1)/(x^2 + x)` है।


निम्न से कौन सा अवकल समीकरण कोटि 2 का है?


वक्र कुल x2 + y2 – 2ay = 0, जहाँ a एक स्वेच्छ अचर है का अवकल समीकरण है


समीकरण (2y – 1)dx – (2x + 3)dy = 0 का हल है


अवकल समीकरण जिसका एक हल y = acosx + bsinx है


`("dy")/("d"x) + "y" = "e"^-x`, y(0) = 0 का हल है


अवकल समीकरण  `("dy")/("d"x) = "e"^(x - "y") + x^2 "e"^-"y"` का हल है


अवकल समीकरण `("dy")/("d"x) + (2x"y")/(1 + x^2) = 1/(1 + x^2)^2` का हल है


`("dy")/("d"x) + "y"/(xlogx) = 1/x` इस ______ प्रकार का समीकरण है।


`("d"x)/("d"x) + "P"_1x = "Q"_1` प्रकार के अवकल समीकरण का व्यापक हल ______ है।


`(1 + x^2) ("dy")/("d"x) + 2x"y" - 4x^2` = 0 का हल ______ है।


`("d"x)/("dy") + "p"_1x = "Q"_1` प्रकार के अवकल समीकरण के हल को x.I.F. = `("I"."F") xx "Q"_1"dy"` द्वारा दिया जाता है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×