Advertisements
Advertisements
प्रश्न
अवकल समीकरण `"dy"/"dx"` = 1 + x + y2 + xy2, को हल कीजिए जब y = 0, x = 0
उत्तर
दिया गया समीकरण `"dy"/"dx"` = 1 + x + y2 + xy2 है।
⇒ `"dy"/"dx"` = 1(1 + x) + y2(1 + x)
⇒ `"dy"/"dx"` = (1 + x)(1 + y2)
⇒ `"dy"/(1 + "y"^2)` = (1 + x)dx
दोनों पक्षों को जोड़ने पर, हम प्राप्त करते हैं
`int "dy"/(1 + "y"^2) = int(1 + x)"d"x`
⇒ `tan^-1"y" = x + x^2/2 + "c"`
x = 0 और y = 0 रखिए
हमें प्राप्त होता है tan–1(0) = 0 + 0 + c
⇒ c = 0
∴ tan–1y = `x + x^2/2`
⇒ y = `tan(x + x^2/2)`
अत: वाँछित हल y = `tan(x + x^2/2)` है।
APPEARS IN
संबंधित प्रश्न
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`dy/dx + y/x + x^2`
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`xdy/dx + 2y = x^2 log x`
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`(x + 3y^2) dy/dx = y, (y > 0)`
निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए-
`dy/dx - 3 y cot x = sin 2x; y = 2` यदि x = `pi/2`
अवकल समीकरण `"dy"/"dx"` = yex, x = 0, y = e में y का मान बताएं जब x = 1
एक तल में सभी अक्षैतिज रेखाओं का अवकल समीकरण ज्ञात कीजिए।
बिंदु (1, 1) से गुजरने वाले एक ऐसे वक्र का समीकरण ज्ञात कौजिए जिसका किसी बिंदु P(x, y) से वक्र के अभिलंब की मूल बिंदु से लंबवत दूरी P से x-अक्ष की दूरी के बराबर है।
बताइए कि समीकरण xdy – ydx = `sqrt(x^2 + "y"^2) "d"x` किस प्रकार का अवकल समीकरण है तथा इसे हल कीजिए।
अवकल समीकरण `("d"^2y)/("d"x^2) + 3("dy"/"dx")^2 = x^2 log(("d"^2y)/("d"x^2))` की घात है
अवकल समीकरण `[1 + ("dy"/"dx")^2]^2 = ("d"^2y)/("d"x^2)` के क्रमशः कोटि और घात हैं
अवकल समीकरण `"dy"/"dx" (x log x) + y` = 2logx का समाकलन गुणक है
परवलयों y2 = 4ax के कुल को निरूपित करने वाले अवकल समीकरण की कोटि ______ है।
अवकल समीकरण `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` को हल करने के लिए उपयुक्त प्रतिस्थापन ______ है।
अवकल समीकरण `"dy"/"dx" = "e"^(x - y)` का व्यापक हल ______ है।
F(x, y) = `("y"cos("y"/x) + x)/(xcos("y"/x))` समघातीय फलन नहीं है।
दिया है कि `"dy"/"dx" = "e"^-2x` और जब x = 5 तब y = 0 है। जब y = 3 है तब x का मान ज्ञात कीजिए।
Ax2 + By2 = 1 से A और B को विलुप्त करके अवकल समीकरण बनाइए।
(1 + tany)(dx – dy) + 2xdy = 0 का व्यापक हल ज्ञात कीजिए।
`("dy")/("d"x) = cos(x + "y") + sin(x + "y")` को हल कीजिए [संकेत : x + y = z रखिए]
`x ("dy")/("d"x) + "y"` = ex का हल है
अवकल समीकरण `("dy")/("d"x) = "e"^(x^2/2) + x"y"` का व्यापक हल है
समीकरण (2y – 1)dx – (2x + 3)dy = 0 का हल है
अवकल समीकरण जिसका एक हल y = acosx + bsinx है
वक्र कुल y2 = 4a(x + a) का अवकल समीकरण है
`("d"^2"y")/("d"x^2) - 2 ("dy")/("d"x) + "y"` = 0 का निम्त में से कौन सा व्यापक हल है
अवकल समीकरण `sqrt(1 + (("dy")/("d"x))^2)` = x की घात ______ है।
`("dy")/("d"x) + "y"` = sinx का व्यापक हल ______ है।
अवकल समीकरण coty dx = xdy का हल ______ है।
`("dy")/("d"x) = ("y"/x)^(1/3)` का हल `"y"^(2/3) - x^(2/3)` = c है।