Advertisements
Advertisements
प्रश्न
(1 + tany)(dx – dy) + 2xdy = 0 का व्यापक हल ज्ञात कीजिए।
उत्तर
दिया गया है कि: (1 + tan y)(dx – dy) + 2xdy = 0
⇒ (1 + tan y)dx – (1 + tan y)dy + 2xdy = 0
⇒ (1 + tan y)dx – (1 + tan y – 2x)dy = 0
⇒ `(1 + tan "y") "dx"/"dy" = (1 + tan "y" - 2x)`
⇒ `"dx"/"dy" = (1 + tan "y" - 2x)/(1 + tan "y")`
⇒ `"dx"/"dy" = 1 - (2x)/(1 + tan "y")`
⇒ `"dx"/"dy" + (2x)/(1 + tan "y")` = 1
यहाँ, P = `2/(1 + tan "y")` तथा Q = 1
समाकलन गुणक I.F.
= `"e"^(int 2/(1 + tan y) "dy")`
= `"e"^(int (2cos"y")/(sin"y" + cos"y")"dy")`
= `"e"^(int (sin"y" + cos"y" - sin"y" + cos"y")/((sin"y" + cos"y")) "dy"`
= `"e"^(int(1 + (cos"y" - sin"y")/(sin"y" + cos"y"))"dy")`
= `"e"^(int 1."dy") . "e"^(int(cos"y" - sin"y")/(siny + cos"y")"dy")`
= `"e"^"y" . "e"^(log(sin"y" + cos"y")`
= `"e"^"y" . (sin"y" + cos "y")`
तो, हल `x xx "I"."F". = int "Q" xx "I"."F". "dy" + "c"` है।
⇒ `x . "e"^"y" (sin"y" + cos"y") = int 1 . "e"^"y" (sin"y" + cos"y")"dy" + "c"`
⇒ `x . "e"^"y" (sin"y" + cos"y") = "e"^"y" . sin "y" + "c"` .....`["क्योंकि" int x^x "f"(x) + "f'"(x)]"d"x = "e"^x "f"(x) + "c"]`
⇒ `x(sin"y" + cos "y") = sin "y" + "c" . "e"^-"y"`
इसलिए, वाँछित हल `x(sin"y" + cos "y") = sin "y" + "c" . "e"^-y` है।
APPEARS IN
संबंधित प्रश्न
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`cos^2 x dy/dx + y = tan x (0 <= x < pi/2)`
निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए-
`dy/dx + 2 y tan x = sin x`; y = 0 यदि x = `pi/4`
वक्रों के कुल y = Ae2x + B.e–2x के लिए अवकल समीकरण ज्ञात कीजिए।
अवकल समीकरण `"dy"/"dx"` = yex, x = 0, y = e में y का मान बताएं जब x = 1
अवकल समीकरण `"dy"/"dx" + y/x` = x2 को हल कीजिए।
बिंदु 1,`pi/4` से जाने वाले वक् का समीकरण ज्ञात कीजिए यदि किसी बिंदु P (x, y) पर वक्र की स्पर्श रेखा की प्रवणता `"y"/x - cos^2"y"/x` है।
`x^2 "dy"/"dx" - x"y" = 1 + cos("y"/x)`, x ≠ 0 तथा जब x = 1 तब y = `pi/2` है को हल कीजिए।
अवकल समीकरण `"dy"/"dx" (x log x) + y` = 2logx का समाकलन गुणक है
परवलयों y2 = 4ax के कुल को निरूपित करने वाले अवकल समीकरण की कोटि ______ है।
दीर्घ वृत्तों जिनका केंद्र मूल बिंदु पर तथा नाभियाँ x-अक्ष पर हैं को निरूपित करने वाले अवकल समीकरण की कोटि 2 है।
अवकल समीकरण `sqrt(1 + ("d"^2y)/("d"x^2)) = x + "dy"/"dx"` की घात परिभाषित नहीं है।
F(x, y) = `("y"cos("y"/x) + x)/(xcos("y"/x))` समघातीय फलन नहीं है।
वह अवकल समीकरण ज्ञात कीजिए जिसका व्यापक हल y = (sin–1x)2 + Acos–1x + B है जहाँ A और B स्वेच्छ अचर हैं।
अवकल समीकरण (1 + y2) tan–1xdx + 2y(1 + x2) dy = 0 को हल कीजिए।
बिंदु (2, 1) से जाने वाले उस वक्र का समीकरण ज्ञात कीजिए जिसका किसी भी बिंदु (x, y) पर स्पर्श रेखा की प्रवणता `(x^2 + "y"^2)/(2x"y")` है।
बिंदु (1, 1) से गुजरने वाले उस वक्र का समीकरण ज्ञात कीजिए जिसके किसी बिंदु P (x, y) से खींची गई स्पर्श रेखा, निर्देशांक अक्षों से A और B पर इस प्रकार मिलती है कि AB का मध्य बिंदु P है।
`x ("dy")/("d"x) = "y" (log "y" – log x + 1)` को हल कीजिए।
अवकल समीकरण tany sec2 x dx + tanx sec2 ydy = 0 का हल है।
अवकल समीकरण `(1 - x^2) ("dy")/("d"x) - x"y"` = 1 का समाकलन गुणक है
वक्र कुल x2 + y2 – 2ay = 0, जहाँ a एक स्वेच्छ अचर है का अवकल समीकरण है
अवकल समीकरण `("dy")/("d"x) = "e"^(x^2/2) + x"y"` का व्यापक हल है
समीकरण (2y – 1)dx – (2x + 3)dy = 0 का हल है
`("d"x)/("d"x) + "P"_1x = "Q"_1` प्रकार के अवकल समीकरण का व्यापक हल ______ है।
अवकल समीकरण coty dx = xdy का हल ______ है।
`("dy")/("d"x) = ("y"/x)^(1/3)` का हल `"y"^(2/3) - x^(2/3)` = c है।
वक्रों के कुल y = ex (Acosx + Bsinx) को निरूपित करने वाला अवकल समीकरण `("d"^2"y")/("d"x^2) - 2 ("dy")/("d"x) + 2"y"` = 0 है।
`x("dy")/("d"x) = "y" + x tan "y"/x` का हल `sin("y"/x)` = cx है।