Advertisements
Advertisements
प्रश्न
अवकल समीकरण `(1 - x^2) ("dy")/("d"x) - x"y"` = 1 का समाकलन गुणक है
विकल्प
– x
`x/(1 + x^2)`
`sqrt(1 - x^2)`
`1/2 log (1 - x^2)`
उत्तर
सही उत्तर `underline(sqrt(1 - x^2))` है।
व्याख्या:
दिया गया अवकल समीकरण `(1 - x^2) ("dy")/("d"x) - x"y"` = 1 है।
⇒ `("dy")/("d"x) - x/(1 - x^2) * "y" = 1/(1 - x^2)`
यहाँ, P = `x/(1 - x^2)` तथा Q = `1/(1 - x^2)`
∴ समाकलन गुणक I.F. = `"e"^(int "Pdx")`
= `"e"^(int (-x)/(1 - x^2) "d"x)`
= `"e"^(1/2 log(1 - x^2))`
= `sqrt(1 - x^2)`
APPEARS IN
संबंधित प्रश्न
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`(x + y) dy/dx = 1`
वक्रों के कुल y = Ae2x + B.e–2x के लिए अवकल समीकरण ज्ञात कीजिए।
अवकल समीकरण `"dy"/"dx" + y/x` = x2 को हल कीजिए।
उस वक्र का समीकरण ज्ञात कीजिए जिसके मूल बिंदु के अतिरिक्त किसी अन्य बिंदु पर स्पर्श रेखा की प्रवणता `"y" + "y"/x` है।
`x^2 "dy"/"dx" - x"y" = 1 + cos("y"/x)`, x ≠ 0 तथा जब x = 1 तब y = `pi/2` है को हल कीजिए।
अवकल समीकरण `("d"^2y)/("d"x^2) + 3("dy"/"dx")^2 = x^2 log(("d"^2y)/("d"x^2))` की घात है
अवकल समीकरण `2x * "dy"/"dx" y` = 3 का हल किस कुल को निरूपित करता है?
निम्न में से कौन सा x और y में समघातीय फलन नहीं है।
अवकल समीकरण `"dx"/x + "dy"/y` = 0 का हल है
अवकल समीकरण `x "dt"/"dx" + 2"y"` = x2 का हल है
अवकल समीकरण `"dy"/"dx" = "e"^(x - y)` का व्यापक हल ______ है।
दीर्घ वृत्तों जिनका केंद्र मूल बिंदु पर तथा नाभियाँ x-अक्ष पर हैं को निरूपित करने वाले अवकल समीकरण की कोटि 2 है।
अवकल समीकरण `"dy"/"dx" + "y" sec x` = tan x का व्यापक हल y(secx – tanx) = secx – tanx + x + k है।
अवकल समीकरण `"y"^2 "dy"/"dx" + "y"^2 + 1` = 0 का एक हल x + y = tan–1y है।
अवकल समीकरण `("d"^2"y")/("d"x^2) - x^2 "dy"/"dx" + x"y"` = x का एक विशिष्ट हल y = x है।
`"dy"/"dx"` = 2y–x का हल ज्ञात कीजिए।
अवकल समीकरण `"dy"/"dx" + 1` = ex + y को हल कीजिए।
उस वक्र का समीकरण ज्ञात कीजिए जो मूल बिंदु से होकर जाता है और अवकल समीकरण `(1 + x^2) "dy"/"dx" + 2x"y"` = 4x2 को संतुष्ट करता है।
y2dx + (x2 – xy + y2) dy = 0 का व्यापक हल ज्ञात कीजिए।
`2("y" + 3) - x"y" "dy"/"dx"` = 0 को हल कीजिए जबकि y (1) = – 2 दिया है।
अवकल समीकरण (1 + y2) tan–1xdx + 2y(1 + x2) dy = 0 को हल कीजिए।
मूल बिंदु से गुजरने वाले वक्र का समीकरण ज्ञात कीजिए यदि इस वक्र के किसी बिंदु (x, y) पर स्पर्श रेखा की प्रवणता इस बिंदु के x निर्देशांक (भुज) तथा y निर्देशांक (कोटि) के अंतर के वर्ग के बराबर है।
y = Ax + A3 } द्वारा निरूपित वक्रों के कुल के अवकल समीकरण की घात है
अवकल समीकरण `("dy")/("d"x) + (1 + "y"^2)/(1 + x^2)` का हल है
अवकल समीकरण `("dy")/("d"x) + "y" = (1 + "y")/x` का समाकलन गुणक है
`x ("dy")/("d"x) + "y"` = ex का हल है
वक्र कुल y = Ax + A3 उस अवकल समीकरण के तदनुरूपी (संगत) है जिसकी कोटि है
अवकल समीकरण `sqrt(1 + (("dy")/("d"x))^2)` = x की घात ______ है।
`("d"x)/("d"x) + "P"_1x = "Q"_1` प्रकार के अवकल समीकरण का व्यापक हल ______ है।
वृत्तों के कुल x2 + (y – a)2 = a2 को निरूपित करने वाले अवकल समीकरण की कोटि दो होगी।