Advertisements
Advertisements
प्रश्न
`("d"x)/("d"x) + "P"_1x = "Q"_1` प्रकार के अवकल समीकरण का व्यापक हल ______ है।
उत्तर
`("d"x)/("d"x) + "P"_1x = "Q"_1` प्रकार के अवकल समीकरण का व्यापक हल `underline(x"e"^(int"Pdx") = int "Q"_1"e"^(int P_1"dy") "dy" + "C")` है।
व्याख्या:
हमें प्राप्त होता है `("d"x)/("d"x) + "P"_1x = "Q"_1`
ऐसे समीकरण को हल करने के लिए हम दोनों पक्षों से गुणा करते हैं
समाकलन गुणक = I.F. = `"e"^(int "Pdx")`
तो हमें `"e"^(int"Pdx") (("d"x)/("dy") + "P"_1x) = "Q"_1"e"^(int"Pdx")` प्राप्त होता है
⇒ `("d"x)/("dy") "e"^(int"Pdx") + "P"_1"e"^(int"Pdy") = "Q"_1"e"^(int"P"_1"dy")`
⇒ `"d"/("dy")(x"e"^(int"P"_1"dy")) = "Q"_1"e"^(int"P"_1"dy")`
⇒ `int "d"/("dy") (x"e"^(int"P"_1"dy"))"dy" = int "Q"_1"e"^(int"P"_1"dy") "dy"`
⇒ `x"e"^(int"P"_1"dy") = int"Q"_1"e"^(int"P"_1"dy") "dy" + "C"`
यह दिए गए अवकल समीकरण का वाँछित हल है।
APPEARS IN
संबंधित प्रश्न
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`x log x dy/dx + y = 2/x log x`
बताइए कि समीकरण xdy – ydx = `sqrt(x^2 + "y"^2) "d"x` किस प्रकार का अवकल समीकरण है तथा इसे हल कीजिए।
अवकल समीकरण `x "dt"/"dx" + 2"y"` = x2 का हल है
अवकल समीकरण `x "dy"/"dx" - y` = sinx का समाकलन गणक ______ है।
वक्रों के कुल y = A sinx + B cosx को निरूपित करने वाला अवकल समीकरण ______ है।
F(x, y) = `("y"cos("y"/x) + x)/(xcos("y"/x))` समघातीय फलन नहीं है।
अवकल समीकरण `"dy"/"dx" - y` = cos x is ex का समाकलन गुणक ex है।
अवकल समीकरण x(1 + y2)dx + y(1 + x2)dy = 0 का व्यापक हल (1 + x2)(1 + y2) = k है।
अवकल समीकरण `"y"^2 "dy"/"dx" + "y"^2 + 1` = 0 का एक हल x + y = tan–1y है।
`"dy"/"dx"` = 2y–x का हल ज्ञात कीजिए।
यदि y (x) समीकरण `((2 + sinx)/(1 + "y"))"dy"/"dx"` = – cosx का हल है और y (0) = 1, है तब `"y"(pi/2)` का मान ज्ञात कीजिए।
`"y" + "d"/("d"x) (x"y") = x(sinx + logx)` को हल कीजिए।
`("dy")/("d"x) -3"y" = sin2x` का व्यापक हल ज्ञात कीजिए।
अवकल समीकरण xdy – ydx = 0 का हल निरूपित करता है एक ______
अवकल समीकरण `cosx ("dy")/("d"x) + "y"sinx` = 1 का समाकलन गुणक है।
tan–1 x + tan–1 y = c किस अवकल समीकरण का व्यापक हल है?
अवकल समीकरण `"y" ("dy")/("d"x) + "c"` निरूपित करता है
अवकल समीकरण `("d"^2"y")/("d"x^2) + (("dy")/("d"x))^3 + 6"y"^5` = 0 की घात है
अवकल समीकरण `("dy")/("d"x) + "y" tanx - secx` = 0 का समाकलन गुणक है
अवकल समीकरण `("dy")/("d"x) + (1 + "y"^2)/(1 + x^2)` का हल है
अवकल समीकरण `("dy")/("d"x) + "y" = (1 + "y")/x` का समाकलन गुणक है
`("dy")/("d"x) = 2x"e"^(x^2 - "y")` का व्यापक हल है
अवकल समीकरण (ex + 1) ydy = (y + 1) exdx का व्यापाक हल है
अवकल समीकरण `x("dy")/("d"x) + 2"y" = x^2` का हल ______ है।
`(1 + x^2) ("dy")/("d"x) + 2x"y" - 4x^2` = 0 का हल ______ है।
`("d"x)/("dy") = "g"(x, "y")` जहाँ g (x, y) एक शून्य घात वाला समघातीय फलन है, प्रकार के अवकल समीकरण को हल करने के लिए सही प्रतिस्थापन x = vy है।
वृत्तों के कुल x2 + (y – a)2 = a2 को निरूपित करने वाले अवकल समीकरण की कोटि दो होगी।
एक तल में सभी अक्षतिज (रेखाएँ जो क्षैतिज नहीं हैं) सरल रेखाओं का अवकल
समीकरण `("d"^2x)/("dy"^2)` = 0 है।