Advertisements
Advertisements
प्रश्न
अवकल समीकरण (ex + 1) ydy = (y + 1) exdx का व्यापाक हल है
विकल्प
(y + 1) = k(ex + 1)
y + 1 = ex + 1 + k
y = log {k(y + 1)(ex + 1)}
y = `log{("e"^x + 1)/("y" + 1)} + "k"`
उत्तर
सही उत्तर y = log {k(y + 1)(ex + 1)} है।
व्याख्या:
दिया गया अवकल समीकरण (ex + 1) ydy = (y + 1) exdx है।
⇒ `"y"/("y" + 1) "dy" = "e"^x/("e"^x + 1) "d"x`
दोनों पक्षों का समाकलन करने पर हमें प्राप्त होता है
`int "y"/("y" + 1) "dy" = int "e"^x/("e"^x + 1)"d"x`
⇒ `int ("y" + 1 - 1)/("y" + 1) "dy" = int "e"^x/("e"^x + 1) "d"x`
⇒ `int 1. "dy" - int 1/("y" + 1) "dy" = int "e"^x/("e"^x + 1) "d"x`
⇒ `"y" - log|"y" + 1| = log|"e"^x + 1| + log"k"`
⇒ y = `log|"y" + 1| + log|"e"^x + 1| + log "k"`
⇒ y = `log|"k"("y" + 1)("e"^x + 1)|`
APPEARS IN
संबंधित प्रश्न
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`(x + 3y^2) dy/dx = y, (y > 0)`
निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए-
`dy/dx - 3 y cot x = sin 2x; y = 2` यदि x = `pi/2`
बिंदु (1, 1) से गुजरने वाले एक ऐसे वक्र का समीकरण ज्ञात कौजिए जिसका किसी बिंदु P(x, y) से वक्र के अभिलंब की मूल बिंदु से लंबवत दूरी P से x-अक्ष की दूरी के बराबर है।
अवकल समीकरण `"dy"/"dx" (x log x) + y` = 2logx का समाकलन गुणक है
अवकल समीकरण `("dy"/"dx")^2 - x "dy"/"dx" + "y"` = 0 का एक हल है
अवकल समीकरण `"dx"/x + "dy"/y` = 0 का हल है
जब `("e"^(-2sqrt(x))/sqrt(x) - y/sqrt(x))("d"x)/("d"y) = 1(x ≠ 0)` को `"dy"/"dx" + "P"y` = Q, के रूप में लिखते हैं तब P = ______ है।
अवकल समीकरण `"dy"/"dx" + "y" sec x` = tan x का व्यापक हल y(secx – tanx) = secx – tanx + x + k है।
अवकल समीकरण `(x^2 - 1) "dy"/"dx" + 2x"y" = 1/(x^2 - 1)` को हल कीजिए।
`"dy"/"dx" + "a"y` = emx का व्यापक हल ज्ञात कीजिए।
यदि y (x) समीकरण `((2 + sinx)/(1 + "y"))"dy"/"dx"` = – cosx का हल है और y (0) = 1, है तब `"y"(pi/2)` का मान ज्ञात कीजिए।
वह अवकल समीकरण ज्ञात कीजिए जिसका व्यापक हल y = (sin–1x)2 + Acos–1x + B है जहाँ A और B स्वेच्छ अचर हैं।
उस वक्र का समीकरण ज्ञात कीजिए जो मूल बिंदु से होकर जाता है और अवकल समीकरण `(1 + x^2) "dy"/"dx" + 2x"y"` = 4x2 को संतुष्ट करता है।
Ax2 + By2 = 1 से A और B को विलुप्त करके अवकल समीकरण बनाइए।
अवकल समीकरण `("d"^2"y")/("d"x^2) + (("dy")/("d"x))^(1/4) + x^(1/5)` = 0, के कोटि और घात क्रमश: हैं
y = Acos αx + Bsin αx जहाँ A और B स्वेछ अचर हैं के लिए अवकल समीकरण है
अवकल समीकरण tany sec2 x dx + tanx sec2 ydy = 0 का हल है।
निम्न से कौन सा अवकल समीकरण कोटि 2 का है?
अवकल समीकरण `(1 - x^2) ("dy")/("d"x) - x"y"` = 1 का समाकलन गुणक है
ex cosy dx – ex siny dy = 0 का व्यापक हल है
अवकल समीकरण `("d"^2"y")/("d"x^2) + (("dy")/("d"x))^3 + 6"y"^5` = 0 की घात है
वक्र कुल x2 + y2 – 2ay = 0, जहाँ a एक स्वेच्छ अचर है का अवकल समीकरण है
अवकल समीकरण `("d"^2"y")/("d"x^2) + "e"^(("dy")/("d"x))` = 0 की घात ______ है।
कोटि तीन के अवकल समीकरण के व्यापक हल में स्वेच्छ अचरों की संख्या ______ है।
`("dy")/("d"x) = "f"(x, "y")` जहाँ f (x, y) एक शून्य घात वाला समघातीय फलन है, को हल करने के लिए सही प्रतिस्थापन y = vx है।
वृत्तों के कुल x2 + (y – a)2 = a2 को निरूपित करने वाले अवकल समीकरण की कोटि दो होगी।
`("dy")/("d"x) = ("y"/x)^(1/3)` का हल `"y"^(2/3) - x^(2/3)` = c है।