Advertisements
Advertisements
प्रश्न
अवकल समीकरण `("dy")/("d"x) = "e"^(x - "y") + x^2 "e"^-"y"` का हल है
विकल्प
y =`"e"^(x - "y") = x^2 "e"^-"y" + "c"`
`"e"^"y" - "e"^x = x^3/3 + "c"`
`"e"^x + "e"^"y" = x^3/3 + "c"`
`"e"^x - "e"^"y" = x^3/3 + "c"`
उत्तर
सही उत्तर `underline("e"^"y" - "e"^x = x^3/3 + "c")` है।
व्याख्या:
दिया गया अवकल समीकरण `("dy")/("d"x) = "e"^(x - "y") + x^2 "e"^-"y"` है।
⇒ `("dy")/("d"x) = "e"^x . "e"^-"y" + x^2 . "e"^-"y"`
⇒ `("dy")/("d"x) = "e"^-"y" ("e"^x + x^2)`
⇒ `("dy")/"e"^-"y" = ("e"^x + x^2)"d"x`
⇒ `"e"^"y" . "dy" = ("e"^x + x^2)"d"x`
दोनों पक्षों का समाकलन करने पर हमें प्राप्त होता है
`int "e"^x "dy" = int ("e"^x + x^2) "d"x`
⇒ `"e"^"y" = "e"^x + x^3/3 + "c"`
⇒ `"e"^"y" - "e"^x = x^3/3 + "c"`
APPEARS IN
संबंधित प्रश्न
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`dy/dx + (sec x)y = tan x (0 <= x <= pi/2)`
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
y dx + (x – y2)dy = 0
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`(x + 3y^2) dy/dx = y, (y > 0)`
दी गई त्रिज्या a के सभी वृत्तों के अवकल समीकरण की कोटि है
अवकल समीकरण `("dy"/"dx")^2 - x "dy"/"dx" + "y"` = 0 का एक हल है
दिया है कि `"dy"/"dx" = "e"^-2x` और जब x = 5 तब y = 0 है। जब y = 3 है तब x का मान ज्ञात कीजिए।
अवकल समीकरण `(x^2 - 1) "dy"/"dx" + 2x"y" = 1/(x^2 - 1)` को हल कीजिए।
यदि `(1 + "t")"dy"/"dt" - "ty"` = 1 का y(t) एक हल है और y(0) = – 1 है तो दिखाइए कि y(1) = `-1/2`
y2dx + (x2 – xy + y2) dy = 0 का व्यापक हल ज्ञात कीजिए।
अवकल समीकरण (1 + y2) tan–1xdx + 2y(1 + x2) dy = 0 को हल कीजिए।
`x ("dy")/("d"x) = "y" (log "y" – log x + 1)` को हल कीजिए।
अवकल समीकरण `cosx ("dy")/("d"x) + "y"sinx` = 1 का समाकलन गुणक है।
`("dy")/("d"x) - "y"` = 1 का हल जब, y(0) = 1 है
निम्न से कौन सा अवकल समीकरण कोटि 2 का है?
ex cosy dx – ex siny dy = 0 का व्यापक हल है
`("dy")/("d"x) + "y" = "e"^-x` जब y(0) = 0 का हल है
अवकल समीकरण `("dy")/("d"x) + (1 + "y"^2)/(1 + x^2)` का हल है
`x ("dy")/("d"x) + "y"` = ex का हल है
`("dy")/("d"x) + "y" = "e"^-x`, y(0) = 0 का हल है
वक्र कुल y2 = 4a(x + a) का अवकल समीकरण है
`("dy")/("d"x) + "y"tanx = secx` व्यापक हल है
अवकल समीकरण `sqrt(1 + (("dy")/("d"x))^2)` = x की घात ______ है।
`("d"x)/("d"x) + "P"_1x = "Q"_1` प्रकार के अवकल समीकरण का व्यापक हल ______ है।
अवकल समीकरण ydx + (x + xy)dy = 0 का हल ______ है।
`("d"x)/("dy") + "p"_1x = "Q"_1` प्रकार के अवकल समीकरण के हल को x.I.F. = `("I"."F") xx "Q"_1"dy"` द्वारा दिया जाता है।
`("dy")/("d"x) = "f"(x, "y")` जहाँ f (x, y) एक शून्य घात वाला समघातीय फलन है, को हल करने के लिए सही प्रतिस्थापन y = vx है।