Advertisements
Advertisements
प्रश्न
दी गई त्रिज्या a के सभी वृत्तों के अवकल समीकरण की कोटि है
विकल्प
1
2
3
4
उत्तर
सही उत्तर 2 है।
व्याख्या:
माना दिए गए वृत्त कुल का समीकरण (x – h)2 + (y – k)2 = a2 है। इसमें
दो स्वेच्छ अचर h और k हैं। इसलिए दिए गए अवकल समीकरण की कोटि 2 होगी।
APPEARS IN
संबंधित प्रश्न
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`dy/dx + (sec x)y = tan x (0 <= x <= pi/2)`
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`x "dy"/"dx" + y - x + xy cot x = 0 (x ≠ 0)`
निम्नलिखित अवकल समीकरण में से कोटि एवं घात (यदि परिभाषित हो) ज्ञात कीजिए।
`(d^2y)/dx^2 + 5x(dy/dx)^2 - 6y = log x`
वक्रों के कुल y = Ae2x + B.e–2x के लिए अवकल समीकरण ज्ञात कीजिए।
अवकल समीकरण `"dy"/"dx" + y/x` = x2 को हल कीजिए।
अवकल समीकरण `("dy"/"dx")^2 - x "dy"/"dx" + "y"` = 0 का एक हल है
परवलयों y2 = 4ax के कुल को निरूपित करने वाले अवकल समीकरण की कोटि ______ है।
अवकल समीकरण tan x dx + tan y dy = 0 के विशिष्ट हल में स्वेच्छ अचरों की संख्या ______ है।
`"dy"/"dx" + "y"` = 5 एक `"dy"/"dx" + "Py"` = Q प्रकार का अवकल समीकरण है परंतु इसे चर पृथक्करणीय विधि से भी हल कर सकते हैं।
F(x, y) = `(x^2 + y^2)/(x - y)` कोटि 1 का समघातीय फलन है।
दिया है कि `"dy"/"dx" = "e"^-2x` और जब x = 5 तब y = 0 है। जब y = 3 है तब x का मान ज्ञात कीजिए।
(x + y) (dx – dy) = dx + dy को हल कीजिए। [संकेत : dx और dy को पृथक करने के पश्चात x + y = z रखिए ]
Ax2 + By2 = 1 से A और B को विलुप्त करके अवकल समीकरण बनाइए।
`"y" + "d"/("d"x) (x"y") = x(sinx + logx)` को हल कीजिए।
बिंदु (1, 0) से जाने वाले उस वक्र का समीकरण ज्ञात कीजिए जिसके किसी भी बिंदु (x, y) पर स्पर्श रेखा की प्रवणता `("y" - 1)/(x^2 + x)` है।
मूल बिंदु से गुजरने वाले वक्र का समीकरण ज्ञात कीजिए यदि इस वक्र के किसी बिंदु (x, y) पर स्पर्श रेखा की प्रवणता इस बिंदु के x निर्देशांक (भुज) तथा y निर्देशांक (कोटि) के अंतर के वर्ग के बराबर है।
अवकल समीकरण xdy – ydx = 0 का हल निरूपित करता है एक ______
ex cosy dx – ex siny dy = 0 का व्यापक हल है
अवकल समीकरण `("dy")/("d"x) + "y" tanx - secx` = 0 का समाकलन गुणक है
वक्र कुल x2 + y2 – 2ay = 0, जहाँ a एक स्वेच्छ अचर है का अवकल समीकरण है
`("dy")/("d"x) = 2x"e"^(x^2 - "y")` का व्यापक हल है
अवकल समीकरण `("dy")/("d"x) = "e"^(x^2/2) + x"y"` का व्यापक हल है
वक्र कुल y2 = 4a(x + a) का अवकल समीकरण है
`("dy")/("d"x) + "y"tanx = secx` व्यापक हल है
अवकल समीकरण `x("dy")/("d"x) + 2"y" = x^2` का हल ______ है।
द्वितीय कोटि के अवकल समीकरण के विशिष्ट हल में स्वेच्छ अचरों की संख्या ं
दो होती है।
अवकल समीकरण `("dy")/("d"x) = (x + 2"y")/x` का हल x + y = kx2 है।
`x("dy")/("d"x) = "y" + x tan "y"/x` का हल `sin("y"/x)` = cx है।