Advertisements
Advertisements
प्रश्न
y = Acos αx + Bsin αx जहाँ A और B स्वेछ अचर हैं के लिए अवकल समीकरण है
विकल्प
`("d"^2"y")/("d"x^2) - alpha^2"y"` = 0
`("d"^2"y")/("d"x^2) + alpha^2"y"` = 0
`("d"^2"y")/("d"x^2) + alpha"y"` = 0
`("d"^2"y")/("d"x^2) - alpha"y"` = 0
उत्तर
सही उत्तर `underline(("d"^2"y")/("d"x^2) + alpha^2"y" = 0)` है।
व्याख्या:
दिया गया समीकरण है: y = A cos a x + B sin a x
दोनों पक्षों का x के सापेक्ष अवकलन करने पर हमें प्राप्त होता है
`("dy")/("d"x) = -"A" sin alpha x * alpha + "B" cos alpha x * alpha`
= `- "A" alpha sin alphax + "B" alpha cos alpha x`
पुन: दोनों पक्षों का x के सापेक्ष अवकलन करने पर हमें प्राप्त होता है
`("d"^2"y")/("d"x^2) = -"A"alpha^2 cos alpha x - "B" alpha^2 sin alpha x`
⇒ `("d"^2"y")/("d"x^2) = -alpha^2 ("A" cos alphax + "B" sin alpha x)`
⇒ `("d"^2"y")/("d"x^2) = - alpha^2"y" `
⇒ `("d"^2"y")/("d"x^2) + alpha^2"y"` = 0
APPEARS IN
संबंधित प्रश्न
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`x log x dy/dx + y = 2/x log x`
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`(x + y) dy/dx = 1`
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`(x + 3y^2) dy/dx = y, (y > 0)`
अवकल समीकरण `"dy"/"dx" = y/x` का व्यापक हल ज्ञात कीजिए।
बिंदु (1, 1) से गुजरने वाले एक ऐसे वक्र का समीकरण ज्ञात कौजिए जिसका किसी बिंदु P(x, y) से वक्र के अभिलंब की मूल बिंदु से लंबवत दूरी P से x-अक्ष की दूरी के बराबर है।
जब `("e"^(-2sqrt(x))/sqrt(x) - y/sqrt(x))("d"x)/("d"y) = 1(x ≠ 0)` को `"dy"/"dx" + "P"y` = Q, के रूप में लिखते हैं तब P = ______ है।
अवकल समीकरण `("d"^2"y")/("d"x^2) - x^2 "dy"/"dx" + x"y"` = x का एक विशिष्ट हल y = x है।
`"dy"/"dx"` = 2y–x का हल ज्ञात कीजिए।
अवकल समीकरण `(1 + y^2) + (x - "e"^(tan - 1y)) "dy"/"dx"` = 0 का व्यापक हल ज्ञात कीजिए।
अवकल समीकरण dy = cosx(2 – y cosecx) dx को हल कीजिए, दिया है कि x = `pi/2` तब y = 2 है।
(1 + tany)(dx – dy) + 2xdy = 0 का व्यापक हल ज्ञात कीजिए।
`("dy")/("d"x) -3"y" = sin2x` का व्यापक हल ज्ञात कीजिए।
अवकल समीकरण `("d"^2"y")/("d"x^2) + (("dy")/("d"x))^(1/4) + x^(1/5)` = 0, के कोटि और घात क्रमश: हैं
`(x"dy")/("d"x) - "y" = x^4 - 3x` का समाकलन गुणक है:
`("dy")/("d"x) - "y"` = 1 का हल जब, y(0) = 1 है
tan–1 x + tan–1 y = c किस अवकल समीकरण का व्यापक हल है?
अवकल समीकरण `("dy")/("d"x) + (1 + "y"^2)/(1 + x^2)` का हल है
अवकल समीकरण cosx siny dx + sinx cosy dy = 0 का हल है
समीकरण (2y – 1)dx – (2x + 3)dy = 0 का हल है
`("dy")/("d"x) + "y"tanx = secx` व्यापक हल है
अवकल समीकरण (ex + 1) ydy = (y + 1) exdx का व्यापाक हल है
`("dy")/("d"x) + "y"/(xlogx) = 1/x` इस ______ प्रकार का समीकरण है।
अवकल समीकरण ydx + (x + xy)dy = 0 का हल ______ है।
`("dy")/("d"x) + "y"` = sinx का व्यापक हल ______ है।
अवकल समीकरण `("dy")/("d"x) = (x + 2"y")/x` का हल x + y = kx2 है।
एक तल में सभी अक्षतिज (रेखाएँ जो क्षैतिज नहीं हैं) सरल रेखाओं का अवकल
समीकरण `("d"^2x)/("dy"^2)` = 0 है।