Advertisements
Advertisements
प्रश्न
`("dy")/("d"x) + "y"` = sinx का व्यापक हल ______ है।
उत्तर
`("dy")/("d"x) + "y"` = sinx का व्यापक हल `underline("y" = ((sinx - cosx)/2) + "c"."e"^-x)` है।
व्याख्या:
दिया गया अवकल समीकरण `("dy")/("d"x) + "y"` = sinx
क्योंकि, यह एक रैखिक अवकल समीकरण है।
∴ P = 1 और Q = sinx
समाकलन गुणक I.F. = `"e"^(int"Pdx")`
= `"e"^(int1."d"x)`
= ex
∴ हल `"y" xx "i"."F". = int "Q" xx "I"."F". "D"x + "C"` है।
⇒ `"y" . "e"^x = int sin x . "e"6x "d"x + "c"` ....(1)
मान लीजिए I = `int sin_"I"x . "e"_"II"^x "d"x`
I = `sin x . int "e"^x "d"x - int ("D"(sinx) . int"e"^x "d"x)"d"x`
I = `sinx . "e"^x - int cos_"I"x . "e"_"II"^x "d"x`
I = `sinx . "e"^x - [cosx . int "e"^x "d"x - int ("D"(cosx) int"e"^x "d"x)"d"x]`
I = `sin x . "e"6x - [cosx . "e"^x - int - sin x . "e"^x "d"x]`
I = `sin x . "e"^x - cos x . "e"^x - int sin x . "e"^x "d"x`
I = `sin x . "e"^x - cos x . "e"^x - "I"`
⇒ I + I = `"e"^x (sin x - cos x)`
⇒ 2I = `"e"^x (sinx - cosx)`
∴ I = `"e"^x/2 (sinx - cosx)`
समीकरण (1) से हम प्राप्त करते हैं।
`"y" . "e"^x = "e"^x/2 (sinx - cosx) + "c"`
y = `((sinx - cosx)/2) + "c" . "e"^-x`
APPEARS IN
संबंधित प्रश्न
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`xdy/dx + 2y = x^2 log x`
निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए-
`dy/dx - 3 y cot x = sin 2x; y = 2` यदि x = `pi/2`
अवकल समीकरण `(1 - y^2) dy/dx + yx = ay (-1 < y < 1)` का समाकलन गुणक है:
`x^2 "dy"/"dx" - x"y" = 1 + cos("y"/x)`, x ≠ 0 तथा जब x = 1 तब y = `pi/2` है को हल कीजिए।
अवकल समीकरण `2x * "dy"/"dx" y` = 3 का हल किस कुल को निरूपित करता है?
अवकल समीकरण `"dy"/"dx" (x log x) + y` = 2logx का समाकलन गुणक है
निम्न में से कौन सा x और y में समघातीय फलन नहीं है।
अवकल समीकरण `"dx"/x + "dy"/y` = 0 का हल है
F(x, y) = `(sqrt(x^2 + y^2) + y)/x` का घात ______ है।
F(x, y) = `(x^2 + y^2)/(x - y)` कोटि 1 का समघातीय फलन है।
अवकल समीकरण `"y"^2 "dy"/"dx" + "y"^2 + 1` = 0 का एक हल x + y = tan–1y है।
अवकल समीकरण `(x^2 - 1) "dy"/"dx" + 2x"y" = 1/(x^2 - 1)` को हल कीजिए।
ydx – xdy = x2 ydx को हल कीजिए।
अवकल समीकरण `"dy"/"dx"` = 1 + x + y2 + xy2, को हल कीजिए जब y = 0, x = 0
यदि `(1 + "t")"dy"/"dt" - "ty"` = 1 का y(t) एक हल है और y(0) = – 1 है तो दिखाइए कि y(1) = `-1/2`
`2("y" + 3) - x"y" "dy"/"dx"` = 0 को हल कीजिए जबकि y (1) = – 2 दिया है।
अवकल समीकरण `[1 + (("dy")/("d"x))^2]^(3/2) = ("d"^2"y")/("d"x^2)` की घात है
अवकल समीकरण `("d"^2"y")/("d"x^2) + (("dy")/("d"x))^(1/4) + x^(1/5)` = 0, के कोटि और घात क्रमश: हैं
y = Ax + A3 } द्वारा निरूपित वक्रों के कुल के अवकल समीकरण की घात है
`("dy")/("d"x) - "y"` = 1 का हल जब, y(0) = 1 है
tan–1 x + tan–1 y = c किस अवकल समीकरण का व्यापक हल है?
अवकल समीकरण `("dy")/("d"x) + (1 + "y"^2)/(1 + x^2)` का हल है
अवकल समीकरण `("dy")/("d"x) + "y" = (1 + "y")/x` का समाकलन गुणक है
अवकल समीकरण ydx + (x + xy)dy = 0 का हल ______ है।
अवकल समीकरण `("d"x)/("dy") + "P"_1x = "Q"_1` के समाकलन गुणक को `"e"^(int "P"_1"dy")` से लिखा जाता है।
द्वितीय कोटि के अवकल समीकरण के विशिष्ट हल में स्वेच्छ अचरों की संख्या ं
दो होती है।
`x("dy")/("d"x) = "y" + x tan "y"/x` का हल `sin("y"/x)` = cx है।
एक तल में सभी अक्षतिज (रेखाएँ जो क्षैतिज नहीं हैं) सरल रेखाओं का अवकल
समीकरण `("d"^2x)/("dy"^2)` = 0 है।