हिंदी

Dydyxdydx-y=x4-3x का समाकलन गुणक है: - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

`(x"dy")/("d"x) - "y" = x^4 - 3x`  का समाकलन गुणक है:

विकल्प

  • x

  • logx

  • `1/x`

  • – x

MCQ

उत्तर

सही उत्तर `underline(1/x)` है।

व्याख्या:

दिया गया अवकल समीकरण `x ("dy")/("d"x) - "y" = x^4 - 3x` है।

⇒ `("dy")/("d"x) - "y"/x = x^3 - 3`

यहाँ, P = `- 1/x` और Q = `x^3 - 3`

अत: समाकलन गुणक = `"e"^(int "Pdx")`

= `"e"^(int 1/x "d"x)`

= `"e"^(-logx)`

= `"e"^(log  1/x)`

= `1/x`.

shaalaa.com
अवकल समीकरण
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: अवकल समीकरण - प्रश्नावली [पृष्ठ १९२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
अध्याय 9 अवकल समीकरण
प्रश्नावली | Q 43 | पृष्ठ १९२

संबंधित प्रश्न

निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

(1 + x2)dy + 2xy dx = cot x dx (x ≠ 0)


अवकल समीकरण x`dy/dx - y = 2x^2` का समाकलन गुणक है:


अवकल समीकरण `"dy"/"dx" = y/x` का व्यापक हल ज्ञात कीजिए।


उस वक्र का समीकरण ज्ञात कीजिए जिसके मूल बिंदु के अतिरिक्त किसी अन्य बिंदु पर स्पर्श रेखा की प्रवणता `"y" + "y"/x` है।


अवकल समीकरण `("dy"/"dx")^2 - x "dy"/"dx" + "y"` = 0 का एक हल है


अवकल समीकरण `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` को हल करने के लिए उपयुक्त प्रतिस्थापन ______ है।


जब `("e"^(-2sqrt(x))/sqrt(x) - y/sqrt(x))("d"x)/("d"y) = 1(x ≠ 0)` को `"dy"/"dx" + "P"y` = Q, के रूप में लिखते हैं तब P = ______ है।


अवकल समीकरण `(x^2 - 1) "dy"/"dx" + 2x"y" = 1/(x^2 - 1)` को हल कीजिए।


अवकल समीकरण `"dy"/"dx" + 2x"y"` = y को हल कीजिए।


`"dy"/"dx" + "a"y` = emx का व्यापक हल ज्ञात कीजिए।


अवकल समीकरण  `"dy"/"dx"` = 1 + x + y2 + xy2,  को हल कीजिए जब y = 0, x = 0


`(x + 2"y"^3)  "dy"/"dx"` = y का व्यापक हल ज्ञात कीजिए।


उस वक्र का समीकरण ज्ञात कीजिए जो मूल बिंदु से होकर जाता है और अवकल समीकरण `(1 + x^2) "dy"/"dx" + 2x"y"` = 4x2 को संतुष्ट करता है।


(1 + tany)(dx – dy) + 2xdy = 0 का व्यापक हल ज्ञात कीजिए।


यदि y = e–x (Acosx + Bsinx) तब y एक हल है


अवकल समीकरण xdy – ydx = 0 का हल निरूपित करता है एक ______


अवकल समीकरण tany sec2 x dx + tanx sec2 ydy = 0 का हल है।


निम्न से कौन सा अवकल समीकरण कोटि 2 का है?


अवकल समीकरण `"y" ("dy")/("d"x) + "c"` निरूपित करता है


ex cosy dx – ex siny dy = 0 का व्यापक हल है


समीकरण (2y – 1)dx – (2x + 3)dy = 0 का हल है


अवकल समीकरण `("d"^2"y")/("d"x^2) + "e"^(("dy")/("d"x))` = 0 की घात ______ है।


`("dy")/("d"x) + "y"/(xlogx) = 1/x` इस ______ प्रकार का समीकरण है।


`("d"x)/("dy") + "p"_1x = "Q"_1` प्रकार के अवकल समीकरण के हल को x.I.F. = `("I"."F") xx "Q"_1"dy"` द्वारा दिया जाता है।


द्वितीय कोटि के अवकल समीकरण के विशिष्ट हल में स्वेच्छ अचरों की संख्या ं

दो होती है।


`x("dy")/("d"x) = "y" + x tan  "y"/x` का हल `sin("y"/x)` = cx है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×