Advertisements
Advertisements
प्रश्न
बिंदु (2, 1) से जाने वाले उस वक्र का समीकरण ज्ञात कीजिए जिसका किसी भी बिंदु (x, y) पर स्पर्श रेखा की प्रवणता
उत्तर
यह देखते हुए कि (x, y) पर एक वक्र के स्पर्शरेखा का ढलान
यह एक समघातीय अवकल समीकरण है
तो, y = vx रखिए
⇒
⇒
⇒
⇒
⇒
⇒
दोनों पक्षों का समाकलन करने पर हमें प्राप्त होता है
⇒
⇒
⇒
⇒
⇒
क्योंकि वक्र बिंदु (2, 1) से होकर जा रहा है।
∴
⇒
⇒ c =
इसलिए, वाँछित समीकरण
⇒ 2(x2 – y2) = 3x है।
APPEARS IN
संबंधित प्रश्न
निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए।
(x + y) dy + (x – y) dx = 0; y = 1; यदि x = 1
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
(1 + x2)dy + 2xy dx = cot x dx (x ≠ 0)
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
y dx + (x – y2)dy = 0
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
अवकल समीकरण x
बिंदु 1,
बताइए कि समीकरण xdy – ydx =
दी गई त्रिज्या a के सभी वृत्तों के अवकल समीकरण की कोटि है
अवकल समीकरण
अवकल समीकरण
अवकल समीकरण
यदि y (x) समीकरण
वह अवकल समीकरण ज्ञात कीजिए जिसका व्यापक हल y = (sin–1x)2 + Acos–1x + B है जहाँ A और B स्वेच्छ अचर हैं।
अवकल समीकरण
y2dx + (x2 – xy + y2) dy = 0 का व्यापक हल ज्ञात कीजिए।
अवकल समीकरण dy = cosx(2 – y cosecx) dx को हल कीजिए, दिया है कि x =
अवकल समीकरण xdy – ydx = 0 का हल निरूपित करता है एक ______
निम्न से कौन सा अवकल समीकरण कोटि 2 का है?
y = aemx+ be–mx निम्न में से किस अवकल समीकरण को संतुष्ट करता है
कोटि तीन के अवकल समीकरण के व्यापक हल में स्वेच्छ अचरों की संख्या ______ है।
वृत्तों के कुल x2 + (y – a)2 = a2 को निरूपित करने वाले अवकल समीकरण की कोटि दो होगी।
वक्रों के कुल y = ex (Acosx + Bsinx) को निरूपित करने वाला अवकल समीकरण
अवकल समीकरण