हिंदी

Y = aemx+ be–mx निम्न में से किस अवकल समीकरण को संतुष्ट करता है - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

y = aemx+ be–mx निम्न में से किस अवकल समीकरण को संतुष्ट करता है

विकल्प

  • `("dy")/("d"x) + "my"` = 0

  • `("dy")/("d"x) - "my"` = 0

  • `("d"^2"y")/("d"x^2) - "m"^2"y"` = 0

  • `("d"^2"y")/("d"x^2) + "m"^2"y"` = 0

MCQ

उत्तर

सही उत्तर `underline(("d"^2"y")/("d"x^2) - "m"^2"y" = 0)`  है।

व्याख्या:

दिया गया समीकरण y = `"ae"^("m"x) + "be"^(-"m"x)` है।

सापेक्ष अवकलन करने पर, हमें `("dy")/("d"x) = "a" . "me"^("m"x) - "b" . "me"^(-"m"x)` प्राप्त होता है

पुन: सापेक्ष अवकलन करने पर हमें प्राप्त होता है

`("d"^2"y")/("d"x^2) = "am"^2 "e"^("m"x) + "bm"^2 "e"^(-"m"x)`

⇒ `("d"^2"y")/("d"x^2) = "m"^2 ("ae"^("m"x) + "be"^(-"m"x))`

⇒ `("d"^2"y")/("d"x^2) = "m"^2"y"`

⇒ `("d"^2"y")/("d"x^2) - "m"^2"y"` = 0

shaalaa.com
अवकल समीकरण
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: अवकल समीकरण - प्रश्नावली [पृष्ठ १९४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
अध्याय 9 अवकल समीकरण
प्रश्नावली | Q 56 | पृष्ठ १९४

संबंधित प्रश्न

निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`xdy/dx + 2y = x^2 log x`


निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`x "dy"/"dx" + y - x + xy cot x = 0 (x ≠ 0)`


मूल बिंदु से गुजरने वाली सरल रेखाओं के कुल का अवकल समीकरण ज्ञात कीजिए।


एक तल में सभी अक्षैतिज रेखाओं का अवकल समीकरण ज्ञात कीजिए। 


बताइए कि समीकरण xdy – ydx = `sqrt(x^2 + "y"^2)  "d"x` किस प्रकार का अवकल समीकरण है तथा इसे हल कीजिए। 


अवकल समीकरण `[1 + ("dy"/"dx")^2]^2 = ("d"^2y)/("d"x^2)`  के क्रमशः कोटि और घात हैं


अवकल समीकरण `("dy"/"dx")^2 + (("d"^2y)/("d"x^2))^2` = 0 की घात ______ हैं।


अवकल समीकरण `x "dy"/"dx" - y` = sinx का समाकलन गणक ______ है।


दीर्घ वृत्तों जिनका केंद्र मूल बिंदु पर तथा नाभियाँ x-अक्ष पर हैं को निरूपित करने वाले अवकल समीकरण की कोटि 2 है।


अवकल समीकरण `"dy"/"dx" - y` = cos x is ex का समाकलन गुणक ex है।


अवकल समीकरण  x(1 + y2)dx + y(1 + x2)dy = 0 का व्यापक हल (1 + x2)(1 + y2) = k है।


अवकल समीकरण `("d"^2"y")/("d"x^2) - x^2 "dy"/"dx" + x"y"` = x का एक विशिष्ट हल y = x है।


उस वक्र का समीकरण ज्ञात कीजिए जो मूल बिंदु से होकर जाता है और अवकल समीकरण `(1 + x^2) "dy"/"dx" + 2x"y"` = 4x2 को संतुष्ट करता है।


`x^2 "dy"/"dx"` = x2 + xy + y2 को हल कीजिए।


`2("y" + 3) - x"y" "dy"/"dx"` = 0 को हल कीजिए जबकि y (1) = – 2 दिया है।


अवकल समीकरण `("d"^2"y")/("d"x^2) + (("dy")/("d"x))^(1/4) + x^(1/5)` = 0, के कोटि और घात क्रमश: हैं


अवकल समीकरण xdy – ydx = 0 का हल निरूपित करता है एक ______


अवकल समीकरण `cosx ("dy")/("d"x) + "y"sinx` = 1 का समाकलन गुणक है।


`("dy")/("d"x) - "y"` = 1 का हल जब, y(0) = 1 है


`("dy")/("d"x) + "y" = "e"^-x` जब y(0) = 0  का हल है


अवकल समीकरण `("dy")/("d"x) + (1 + "y"^2)/(1 + x^2)` का हल है


अवकल समीकरण cosx siny dx + sinx cosy dy = 0 का हल है


वक्र कुल y = Ax + A3 उस अवकल समीकरण के तदनुरूपी (संगत) है जिसकी कोटि है


समीकरण (2y – 1)dx – (2x + 3)dy = 0 का हल है


`("dy")/("d"x) + "y"tanx = secx` व्यापक हल है


`(1 + x^2) ("dy")/("d"x) + 2x"y" - 4x^2` = 0 का हल ______ है।


अवकल समीकरण ydx + (x + xy)dy = 0 का हल ______ है।


`("d"x)/("dy") = "g"(x, "y")` जहाँ g (x, y) एक शून्य घात वाला समघातीय फलन है, प्रकार के अवकल समीकरण को हल करने के लिए सही प्रतिस्थापन x = vy है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×