Advertisements
Advertisements
प्रश्न
निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए।
(x + y) dy + (x – y) dx = 0; y = 1; यदि x = 1
उत्तर
दिया है, (x + y) dy + (x – y) dx = 0
`=> dy/dx = (y - x)/(y + x)` ...(i)
∵ अंश व हर की घात समान हैं इसलिए यह एक समघातीय अवकल समीकरण है।
∴ y = vx रखने पर,
`dy/dx = v + x (dv)/dx` ...(समीकरण (i) में)
`=> v + x (dv)/dx = (vx - x)/(vx + x)`
`=> x (dv)/dx = (v - 1)/(v + 1) - v`
`x (dv)/dx = (v - 1 - v^2 - 1)/(v + 1)`
`= - (v^2 + 1)/(v + 1)`
`(v + 1)/(v^2 + 1)dv = - 1/x`dx
समाकलन करने पर,
`=> 1/2 int 2v/(v^2 + 1)dv + int 1/(v^2 + 1) dv = - int 1/x dx`
`1/2 log (v^2 + 1) + tan^-1 (v) = - log x + C`
log (v2 + 1) + 2 tan-1 (v) = - 2 log x + 2C
अतः v के स्थान पर `y/x` रखने पर
`log ((y^2 + x^2)/x^2) + 2 tan^-1 (y/x) = - log x^2 + 2C`
`log (x^2 + y^2) - log x^2 + 2 tan^-1 (y/x) = - log x^2 x + 2C`
`log (x^2 + y^2) + 2 tan^-1 (y/x) = 2C` ....(ii)
दिया है y = 1 और x = 1
log (12 + 12) + 2 tan-1 (1) = 2C
log 2 + 2 tan-1 (1) = 2C
2C = log 2 + 2 `xx pi/4 = log 2 + pi/2`
C की यह मान समीकरण (ii) में रखने पर
`log (x^2 + y^2) + 2 tan^-1 (y/x) = pi/2 + log 2`
APPEARS IN
संबंधित प्रश्न
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`x log x dy/dx + y = 2/x log x`
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`x "dy"/"dx" + y - x + xy cot x = 0 (x ≠ 0)`
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`(x + y) dy/dx = 1`
निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए-
`(1 + x^2) dy/dx + 2xy = 1/(1 + x^2); y = 0` यदि x = 1
अवकल समीकरण `"dy"/"dx"` = yex, x = 0, y = e में y का मान बताएं जब x = 1
बिंदु 1,`pi/4` से जाने वाले वक् का समीकरण ज्ञात कीजिए यदि किसी बिंदु P (x, y) पर वक्र की स्पर्श रेखा की प्रवणता `"y"/x - cos^2"y"/x` है।
अवकल समीकरण `("d"^2y)/("d"x^2) + 3("dy"/"dx")^2 = x^2 log(("d"^2y)/("d"x^2))` की घात है
अवकल समीकरण `[1 + ("dy"/"dx")^2]^2 = ("d"^2y)/("d"x^2)` के क्रमशः कोटि और घात हैं
अवकल समीकरण `x "dy"/"dx" - y` = sinx का समाकलन गणक ______ है।
अवकल समीकरण `"dy"/"dx" + y/x` = 1 का व्यापक हल ______ है।
अवकल समीकरण x(1 + y2)dx + y(1 + x2)dy = 0 का व्यापक हल (1 + x2)(1 + y2) = k है।
अवकल समीकरण `"dy"/"dx"` = 1 + x + y2 + xy2, को हल कीजिए जब y = 0, x = 0
वह अवकल समीकरण ज्ञात कीजिए जिसका व्यापक हल y = (sin–1x)2 + Acos–1x + B है जहाँ A और B स्वेच्छ अचर हैं।
उस वक्र का समीकरण ज्ञात कीजिए जो मूल बिंदु से होकर जाता है और अवकल समीकरण `(1 + x^2) "dy"/"dx" + 2x"y"` = 4x2 को संतुष्ट करता है।
(x + y) (dx – dy) = dx + dy को हल कीजिए। [संकेत : dx और dy को पृथक करने के पश्चात x + y = z रखिए ]
(1 + tany)(dx – dy) + 2xdy = 0 का व्यापक हल ज्ञात कीजिए।
`("dy")/("d"x) -3"y" = sin2x` का व्यापक हल ज्ञात कीजिए।
अवकल समीकरण `(("d"^2"y")/("d"x^2))^2 + (("dy")/("d"x))^2 = xsin(("dy")/("d"x))` की घात है
अवकल समीकरण `[1 + (("dy")/("d"x))^2]^(3/2) = ("d"^2"y")/("d"x^2)` की घात है
यदि y = e–x (Acosx + Bsinx) तब y एक हल है
अवकल समीकरण `cosx ("dy")/("d"x) + "y"sinx` = 1 का समाकलन गुणक है।
अवकल समीकरण `("dy")/("d"x) + (1 + "y"^2)/(1 + x^2)` का हल है
`x ("dy")/("d"x) + "y"` = ex का हल है
वक्र कुल x2 + y2 – 2ay = 0, जहाँ a एक स्वेच्छ अचर है का अवकल समीकरण है
अवकल समीकरण जिसका एक हल y = acosx + bsinx है
अवकल समीकरण `(("d"^3"y")/("d"x^3))^2 - 3 ("d"^2"y")/("d"x^2) + 2(("dy")/("d"x))^4` = y4 की कोटि तथा घात क्रमश: है
`("dy")/("d"x) + "y"` = sinx का व्यापक हल ______ है।
`x("dy")/("d"x) = "y" + x tan "y"/x` का हल `sin("y"/x)` = cx है।