Advertisements
Advertisements
प्रश्न
`("dy")/("d"x) = cos(x + "y") + sin(x + "y")` को हल कीजिए [संकेत : x + y = z रखिए]
उत्तर
दिया गया है कि: `("dy")/("d"x) = cos(x + "y") + sin(x + "y")`
x को अवकलित करने पर x + y = v हमें प्राप्त होता है,
`1 + ("dy")/("d"x) = "dv"/"dx"`
∴ `("dy")/("d"x) = "dv"/"dx" - 1`
∴ `"dv"/"dx" - 1` = cos v + sin v
⇒ `"dv"/"dx"` = cos v + sin v + 1
⇒ `"dv"/(cos"v" + sin"v" + 1)` = dx
दोनों पक्षों का समाकलन करने पर हमें प्राप्त होता है
`int "dv"/(cos"v" + sin"v" + 1) = int 1 . "d"x`
⇒ `int "dv"/(((1 - tan^2 "v"/2)/(1 + tan^2 "v"/2) + (2tan "v"/2)/(1 + tan^2 "v"/2) + 1)) = int 1. "d"x`
⇒ `int ((1 + tan^2 "v"/2))/(1 - tan^2 "v"/2 + 2 tan "v"/2 + 1 + tan^2 "v"/2) "dv" = int 1."d"x`
⇒ `int (sec^2 "v"/2)/(2 + 2 tan "v"/2) "dv" = int 1."d"x`
`2 + 2 tan "v"/2` = t रखिए
`2 * 1/2 sec^2 "v"/2 "dv"` = dt
⇒ `sec^2 "v"/2 "dv"` = dt
⇒ `int "dt"/"t" = int 1."d"x`
⇒ `log|"t"|` = x + c
⇒ `log|2 + 2 tan "v"/2|` = x + c
⇒ `log|2 + 2tan((x + "y")/2)| ` = x + c
⇒ `log2 [1 + tan((x + "y")/2)]` = x + c
⇒ `log2 + log[1 + tan ((x + "y")/2)]` = x + c
⇒ `log[1 + tan((x + "y")/2)]` = x + c – log 2
इसलिए, वाँछित हल `log[1 + tan((x + "y")/2)]` = x + K ....[c – log 2 = K] है।
APPEARS IN
संबंधित प्रश्न
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`xdy/dx + 2y = x^2 log x`
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
y dx + (x – y2)dy = 0
निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए-
`dy/dx + 2 y tan x = sin x`; y = 0 यदि x = `pi/4`
निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए-
`(1 + x^2) dy/dx + 2xy = 1/(1 + x^2); y = 0` यदि x = 1
अवकल समीकरण `(1 - y^2) dy/dx + yx = ay (-1 < y < 1)` का समाकलन गुणक है:
अवकल समीकरण `"dy"/"dx"` = yex, x = 0, y = e में y का मान बताएं जब x = 1
अवकल समीकरण `"dy"/"dx" + y/x` = x2 को हल कीजिए।
अवकल समीकरण x(1 + y2)dx + y(1 + x2)dy = 0 का व्यापक हल (1 + x2)(1 + y2) = k है।
अवकल समीकरण `"dy"/"dx" + 2x"y"` = y को हल कीजिए।
यदि `(1 + "t")"dy"/"dt" - "ty"` = 1 का y(t) एक हल है और y(0) = – 1 है तो दिखाइए कि y(1) = `-1/2`
`x^2 "dy"/"dx"` = x2 + xy + y2 को हल कीजिए।
`2("y" + 3) - x"y" "dy"/"dx"` = 0 को हल कीजिए जबकि y (1) = – 2 दिया है।
(1 + tany)(dx – dy) + 2xdy = 0 का व्यापक हल ज्ञात कीजिए।
बिंदु (2, 1) से जाने वाले उस वक्र का समीकरण ज्ञात कीजिए जिसका किसी भी बिंदु (x, y) पर स्पर्श रेखा की प्रवणता `(x^2 + "y"^2)/(2x"y")` है।
मूल बिंदु से गुजरने वाले वक्र का समीकरण ज्ञात कीजिए यदि इस वक्र के किसी बिंदु (x, y) पर स्पर्श रेखा की प्रवणता इस बिंदु के x निर्देशांक (भुज) तथा y निर्देशांक (कोटि) के अंतर के वर्ग के बराबर है।
बिंदु (1, 1) से गुजरने वाले उस वक्र का समीकरण ज्ञात कीजिए जिसके किसी बिंदु P (x, y) से खींची गई स्पर्श रेखा, निर्देशांक अक्षों से A और B पर इस प्रकार मिलती है कि AB का मध्य बिंदु P है।
अवकल समीकरण `(("d"^2"y")/("d"x^2))^2 + (("dy")/("d"x))^2 = xsin(("dy")/("d"x))` की घात है
अवकल समीकरण `[1 + (("dy")/("d"x))^2]^(3/2) = ("d"^2"y")/("d"x^2)` की घात है
यदि y = e–x (Acosx + Bsinx) तब y एक हल है
`(x"dy")/("d"x) - "y" = x^4 - 3x` का समाकलन गुणक है:
निम्न से कौन सा अवकल समीकरण कोटि 2 का है?
ex cosy dx – ex siny dy = 0 का व्यापक हल है
अवकल समीकरण `("dy")/("d"x) + "y" = (1 + "y")/x` का समाकलन गुणक है
वह वक्र जिसके लिए किसी बिंदु पर स्पर्श रेखा की प्रवणता उस बिंदु के x-अक्ष (भुज) तथा y-अक्ष (कोटि) के अनुपात के बराबर है वह है
अवकल समीकरण `[1 + (("dy")/("d"x))^2] = ("d"^2"y")/("d"x^2)` की कोटि तथा घात क्रमश: है
कोटि तीन के अवकल समीकरण के व्यापक हल में स्वेच्छ अचरों की संख्या ______ है।
अवकल समीकरण `x("dy")/("d"x) + 2"y" = x^2` का हल ______ है।