English

Ydydx(x+2y3) dydx = y का व्यापक हल ज्ञात कीजिए। - Mathematics (गणित)

Advertisements
Advertisements

Question

`(x + 2"y"^3)  "dy"/"dx"` = y का व्यापक हल ज्ञात कीजिए।

Sum

Solution

दिया गया समीकरण `(x + 2"y"^3)  "dy"/"dx"` = y है।

⇒ `"dy"/"dx" = "y"/(x + 2"y"^3)`

⇒ `"dx"/"dy" = (x + 2"y"^3)/"y"`

⇒ `"dx"/"dy" = x/"y" + (2"y"^3)/"y"`

⇒ `"dx"/"dy" - x/"y"` = 2y3

यहाँ P = `- 1/"y"` और Q = 2y2.

∴ समाकलन गुणक I.F. = `"e"^(int"Pdy")`

= `"e"^(int 1/"y" "dy")`

= `"e"^(-log "y")`

= `"e"^(log 1/"y")`

= `1/"y"`.

तो समीकरण का हल है

x.I.F. = `int "Q"."I"."F".  "dy" + "c"`

`x . 1/"y" = int 2"y"^2 . 1/"y"  "dy" + "c"`

⇒ `x/"y" = 2 int "y"  "dy" + "c"`

⇒ `x/"y" = 2. "y"^2/2 + "c"`

⇒ `x/"y" = "y"^2 + "c"`

तो x = y3 + cy = y(y2 + c)

इसलिए, वाँछित हल x = y(y2 + c) है।

shaalaa.com
अवकल समीकरण
  Is there an error in this question or solution?
Chapter 9: अवकल समीकरण - प्रश्नावली [Page 189]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 12
Chapter 9 अवकल समीकरण
प्रश्नावली | Q 10 | Page 189

RELATED QUESTIONS

निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`dy/dx + (sec x)y = tan x (0 <= x <= pi/2)`


निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

(1 + x2)dy + 2xy dx = cot x dx (x ≠ 0)


निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`(x + 3y^2) dy/dx = y, (y > 0)`


अवकल समीकरण `"dy"/"dx"` = yex,  x = 0, y = e में y का मान बताएं जब x = 1


बिंदु 1,`pi/4` से जाने वाले वक् का समीकरण ज्ञात कीजिए यदि किसी बिंदु P (x, y) पर वक्र की स्पर्श रेखा की प्रवणता `"y"/x - cos^2"y"/x` है।


F(x, y) = `(sqrt(x^2 + y^2) + y)/x` का घात ______ है।


वक्रों के कुल y = A sinx + B cosx को निरूपित करने वाला अवकल समीकरण ______ है।


F(x, y) = `("y"cos("y"/x) + x)/(xcos("y"/x))` समघातीय फलन नहीं है।


अवकल समीकरण `"y"^2 "dy"/"dx" + "y"^2 + 1` = 0 का एक हल x + y = tan–1y है।


`"dy"/"dx"` = 2y–x का हल ज्ञात कीजिए।


दिया है कि `"dy"/"dx" = "e"^-2x` और जब x = 5 तब y = 0 है। जब y = 3 है तब x का मान ज्ञात कीजिए।


उन सभी वृत्तों के समीकरण का अवकल समीकरण ज्ञात कीजिए जो मूल बिंदु से होकर जाते हैं तथा केंद्र y-अक्ष पर स्थित है।


उस वक्र का समीकरण ज्ञात कीजिए जो मूल बिंदु से होकर जाता है और अवकल समीकरण `(1 + x^2) "dy"/"dx" + 2x"y"` = 4x2 को संतुष्ट करता है।


y2dx + (x2 – xy + y2) dy = 0 का व्यापक हल ज्ञात कीजिए।


बिंदु (2, 1) से जाने वाले उस वक्र का समीकरण ज्ञात कीजिए जिसका किसी भी बिंदु (x, y) पर स्पर्श रेखा की प्रवणता  `(x^2 + "y"^2)/(2x"y")` है।


अवकल समीकरण `[1 + (("dy")/("d"x))^2]^(3/2) = ("d"^2"y")/("d"x^2)` की घात है


अवकल समीकरण xdy – ydx = 0 का हल निरूपित करता है एक ______


समीकरण (2y – 1)dx – (2x + 3)dy = 0 का हल है


अवकल समीकरण `[1 + (("dy")/("d"x))^2] = ("d"^2"y")/("d"x^2)` की कोटि तथा घात क्रमश: है


`("dy")/("d"x) + "y"tanx = secx` व्यापक हल है


अवकल समीकरण  `("dy")/("d"x) = "e"^(x - "y") + x^2 "e"^-"y"` का हल है


अवकल समीकरण `sqrt(1 + (("dy")/("d"x))^2)` = x की घात ______ है।


द्वितीय कोटि के अवकल समीकरण के विशिष्ट हल में स्वेच्छ अचरों की संख्या ं

दो होती है।


वक्रों के कुल y = ex (Acosx + Bsinx)  को निरूपित करने वाला अवकल समीकरण `("d"^2"y")/("d"x^2) - 2 ("dy")/("d"x) + 2"y"` = 0  है।


अवकल समीकरण `("dy")/("d"x) = (x + 2"y")/x` का हल x + y = kx2 है।


`x("dy")/("d"x) = "y" + x tan  "y"/x` का हल `sin("y"/x)` = cx है।


एक तल में सभी अक्षतिज (रेखाएँ जो क्षैतिज नहीं हैं) सरल रेखाओं का अवकल

समीकरण `("d"^2x)/("dy"^2)` = 0 है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×