English

उन सभी वृत्तों के समीकरण का अवकल समीकरण ज्ञात कीजिए जो मूल बिंदु से होकर जाते हैं तथा केंद्र y-अक्ष पर स्थित है। - Mathematics (गणित)

Advertisements
Advertisements

Question

उन सभी वृत्तों के समीकरण का अवकल समीकरण ज्ञात कीजिए जो मूल बिंदु से होकर जाते हैं तथा केंद्र y-अक्ष पर स्थित है।

Sum

Solution

वृत्त का समीकरण जो मूल बिंदु से होकर जाता है और जिसका केंद्र y-अक्ष पर स्थित है

(x – 0)2 + (y – a)2 = a2

⇒ x2 + y2 + a2 – 2ay = a2

⇒ x2 + y2 – 2ay = 0   ......(i)

दोनों पक्षों का x के सापेक्ष अवकलन करने पर हमें प्राप्त होता है

⇒ `2x + 2"y" * "dy"/"dx" - 2"a" * "dy"/"dx"` = 0

⇒ `x + "y" "dy"/"dx" - "a" * "dy"/"dx"` = 0

⇒ `x + ("y" - "a") * "dy"/"dx"` = 0

`"y" - "a" = x/("dy"/"dx")`

a = `"y" + (-x)/("dy"/"dx")`

a का मान समीकरण (i) में रखने पर, हमें प्राप्त होता है 

`x^2 + "y"^2 - 2("y" + x/("dy"/"dx"))"y"` = 0

⇒ `x^2 + "y"^2 - 2"y"^2 - (2x"y")/("dy"/"dx")` = 0

⇒ `x^2 - "y"^2 = (2x"y")/("dy"/"dx")`

∴ `(x^2 - "y"^2) "dy"/"dx" - 2x"y"` = 0

अत: वाँछित अवकल समीकरण `(x^2 - "y"^2) "dy"/"dx" - 2x"y"` = 0 है।

shaalaa.com
अवकल समीकरण
  Is there an error in this question or solution?
Chapter 9: अवकल समीकरण - प्रश्नावली [Page 189]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 12
Chapter 9 अवकल समीकरण
प्रश्नावली | Q 14 | Page 189

RELATED QUESTIONS

निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए।

(x + y) dy + (x – y) dx = 0; y = 1; यदि x = 1


निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`cos^2 x dy/dx + y = tan x (0 <= x < pi/2)`


निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

y dx + (x – y2)dy = 0


निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए-

`(1 + x^2) dy/dx + 2xy = 1/(1 + x^2); y = 0` यदि x = 1


अवकल समीकरण `"dy"/"dx" = y/x` का व्यापक हल ज्ञात कीजिए।


अवकल समीकरण `"dy"/"dx" + y/x` = x2 को हल कीजिए।


उस वक्र का समीकरण ज्ञात कीजिए जिसके मूल बिंदु के अतिरिक्त किसी अन्य बिंदु पर स्पर्श रेखा की प्रवणता `"y" + "y"/x` है।


अवकल समीकरण `(1 + "dy"/"dx")^3 = (("d"^2y)/("d"x^2))^2` की घात है


अवकल समीकरण `("d"^2y)/("d"x^2) + 3("dy"/"dx")^2 = x^2 log(("d"^2y)/("d"x^2))` की घात है


अवकल समीकरण `x "dt"/"dx" + 2"y"` = x2 का हल है


दीर्घ वृत्तों जिनका केंद्र मूल बिंदु पर तथा नाभियाँ x-अक्ष पर हैं को निरूपित करने वाले अवकल समीकरण की कोटि 2 है।


`x^2 "dy"/"dx"` = x2 + xy + y2 को हल कीजिए।


अवकल समीकरण dy = cosx(2 – y cosecx) dx को हल कीजिए, दिया है कि x = `pi/2` तब y = 2 है।


अवकल समीकरण (1 + y2) tan–1xdx + 2y(1 + x2) dy = 0 को हल कीजिए।


केंद्र (1, 2) वाले सभी सकेंद्री वृत्तों के कुल का अवकल समीकरण ज्ञात कीजिए।


(1 + tany)(dx – dy) + 2xdy = 0 का व्यापक हल ज्ञात कीजिए।


अवकल समीकरण `[1 + (("dy")/("d"x))^2]^(3/2) = ("d"^2"y")/("d"x^2)` की घात है


y = Acos αx + Bsin αx जहाँ A और B स्वेछ अचर हैं के लिए अवकल समीकरण है


अवकल समीकरण xdy – ydx = 0 का हल निरूपित करता है एक ______


ex cosy dx – ex siny dy = 0 का व्यापक हल है


अवकल समीकरण `("dy")/("d"x) + (1 + "y"^2)/(1 + x^2)` का हल है


वक्र कुल x2 + y2 – 2ay = 0, जहाँ a एक स्वेच्छ अचर है का अवकल समीकरण है


`("dy")/("d"x) = 2x"e"^(x^2 - "y")` का व्यापक हल है


समीकरण (2y – 1)dx – (2x + 3)dy = 0 का हल है


`("d"^2"y")/("d"x^2) - 2 ("dy")/("d"x) + "y"` = 0 का निम्त में से कौन सा व्यापक हल है


अवकल समीकरण (ex + 1) ydy = (y + 1) exdx का व्यापाक हल है


अवकल समीकरण ydx + (x + xy)dy = 0 का हल ______ है।


`("d"x)/("dy") = "g"(x, "y")` जहाँ g (x, y) एक शून्य घात वाला समघातीय फलन है, प्रकार के अवकल समीकरण को हल करने के लिए सही प्रतिस्थापन x = vy है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×