Advertisements
Chapters
2: प्रतिलोम तिरिकोंमितिया फलन
3: आव्यूह
4: सारणिक
5: सांतत्य और अवकलनीयता
▶ 6: अवकलज के अनुप्रयोग
7: समाकल
8: स्माकलो के अनुप्रयोग
9: अवकल समीकरण
10: सदिश बीजगणित
Chapter 11: त्रिविमयि ज्यामिति
Chapter 12: रैखिक प्रोग्रामन
Chapter 13: प्रायिकता
![NCERT Exemplar solutions for Mathematics [Hindi] Class 12 chapter 6 - अवकलज के अनुप्रयोग NCERT Exemplar solutions for Mathematics [Hindi] Class 12 chapter 6 - अवकलज के अनुप्रयोग - Shaalaa.com](/images/mathematics-hindi-class-12_6:5f2b1b2038084cf381bfa42c826a928c.jpg)
Advertisements
Solutions for Chapter 6: अवकलज के अनुप्रयोग
Below listed, you can find solutions for Chapter 6 of CBSE NCERT Exemplar for Mathematics [Hindi] Class 12.
NCERT Exemplar solutions for Mathematics [Hindi] Class 12 6 अवकलज के अनुप्रयोग हल किए हुए उदाहरण [Pages 116 - 132]
लघु उत्तरीय प्रश्न
वक्र y = 5x – 2x3 के लिए, यदि x में 2 इकाई/से. की दर से वृद्धि हो रही है, तो x = 3 पर वक्र का प्रावण्य कितनी तीव्रता से परिवर्तित हो रहा है?
`pi/4` अर्ध शीर्ष कोण वाले एक शांकवीय कीप (funnel) से, जिसकां शीर्ष नीचे की ओर है, कीप के पृष्ठ के क्षेत्रफल में 2cm2/sec की समान दर से उसके शीर्ष के एक छिद्र से पानी बह रहा है। पानी के सतह की तिर्यक ऊँचाई के घटने की दर उस समय ज्ञात कीजिए जब उसकी तिर्यंक ऊँचाई 4cm है।
वक्र y2 = x तथा x2 = y के बीच का प्रतिच्छेद - कोण ज्ञात कीजिए।
सिद्ध कीजिए कि फलन f(x) = tanx – 4x अंतराल `((-pi)/3, pi/3)` निरंतर हासमान है।
निर्धारित कीजिए कि x के किन मानों के लिए, फलन y = `x^4 – (4x^3)/3` वर्धमान है तथा किन मानों के लिए, यह हासमान है।
सिद्ध कीजिए कि फलन f(x) = 4x3 – 18x2 + 27x – 7 का कोई उच्चिष्ठ अथवा निम्निष्ठ नहीं है।
अवकलों के प्रयोग द्वारा `sqrt(0.082)` का सन्निकट मान ज्ञात कीजिए।
वक्रों `x^2/"a"^2 - y^2/"b"^2` = 1 तथा xy = c2 के लम्बकोणीय प्रतिच्छेदन के लिए प्रतिबंध ज्ञात कीजिए।
फलन f(x) = `- 3/4 x^4 - 8x^3 - 45/2 x^2 + 105` के सभी स्थानीय उच्चिष्ठ तथा स्थानीय निम्निष्ठ बिंदुओं को ज्ञात कीजिए।
सिद्ध कीजिए कि `x + 1/x` का स्थानीय उच्चतम मीन उसके स्थानीय निम्नतम मान से कम है।
दीर्घ उत्तरीय प्रश्न
किसी शांकवीय बर्तन के शीर्ष के एक छोटे छिद्र से, जिसका अक्ष ऊर्घ्वाधर है, पानी 1 cu cm/sec की दर से बह रहा है। बर्तन में पानी के सतह की तिर्यक ऊँचाई के घटने की दर उस समय ज्ञात कीजिए जब तिर्यक ऊँचाई 4 cm हैं। शांकवीय बर्तन का शीर्ष कोण `pi/6` है।
वक्र y = cos (x + y), –2π ≤ x ≤ 2π, की उन सभी स्पर्श रेखाओं के समीकरण ज्ञात कीजिए जो रेखा x + 2y = 0 के समांतर हैं।
वक्र y2 = 4ax तथा x2 = 4by का प्रतिच्छेद कोण ज्ञात कीजिए।
सिद्ध कीजिए कि वक्र x = 3cos θ – cos3θ, y = 3sinθ – sin3θ के किसी बिंदु पर अभिंलब का समीकरण 4 (y cos3θ – x sin3θ) = 3 sin 4θ
f(x) = secx + log cos2x, 0 < x < 2π का उच्चतम तथा निम्नतम मान ज्ञात कीजिए।
उस महत्तम आयत का क्षेत्रफल ज्ञात कीजिए, जो दीर्घवृत्त `x^2/a^2 + y^2/b^2` = 1 के अंतर्गत स्थित है।
अंतराल `[-pi/2, pi/2]` में फलन f (x) = sin2x – x, के उच्चतम तथा निम्नितम मानों का अंतर ज्ञात कीजिए।
शीर्ष कोण `2theta` वाला एक समद्धिबाहु त्रिभुज a त्रिज्या वाले किसी वृत्त के अंतर्गत स्थित है। सिद्ध कीजिए कि त्रिभुजं का क्षेत्रफल उच्चतम है। जब `theta = pi/6`
वस्तुनिष्ठ प्रश्न 19 से 23 तक
वक्र `3"y" = 6"x" – 5"x"^3` पर स्थित उस बिंदु का भुज, जिस पर वक्र का अभिलंब मूल बिंदुसे होकर जाता है।
1
`1/3`
2
`1/2` है।
दो वक्र x3 – 3xy2 + 2 = 0 तथा 3x2 y – y3 = 2
एक दूसरे को स्पर्श करते हैं।
समकोण पर काटते हैं।
`pi/3` कोण पर काटते हैं।
`pi/4` कोण पर काटते हैं।
समीकरण x = et . cost, y = et . sint द्वारा प्रदत्त वक्र की t = `pi/4` पर स्पर्श रेखा, x-अक्ष से कोण बनाती है।
0
`π/4`
`π/3`
`π/2`
वक्र y = sinx के बिंदु (0, 0) पर अभिलंब का समीकरण:
x = 0
y = 0
x + y = 0
x – y = 0 है।
वक्र y2 = x पर वह बिंदु जहाँ स्पर्श रेखा x-अक्ष से `pi/4` कोण बनाती है।
`(1/2, 1/4)`
`(1/4, 1/2)`
(4, 2)
(1, 1) है।
24 से 29 तक रिक्त स्थान की पूर्ति कीजिए-
a के वे मान जिनके लिए y = x2 + ax + 25 x-अक्ष को स्पर्श करता है, ______ है।
यदि f (x) = `1/(4x^2 + 2x + 1)`, तो इसका उच्चतम मान ______ है।
मान लीजिए कि c पर f का द्वितीय अवकलज है, इस प्रकार कि f ′(c) = 0 तथा f ″(c) > 0, तो c पर फलन ______ है।
यदि f (x) = sinx तो अंतराल `[(-pi)/2, pi/2]` में f का निम्निष्ठ मान ______ है।
sinx + cosx का उच्चिष्ठ मान ______ है।
किसी गोले के आयतन के परिवर्तन की दर उसके पृष्ठीय क्षेत्रफल के सापेक्ष, जब उसकी त्रिज्या 2cm है, ______ है।
NCERT Exemplar solutions for Mathematics [Hindi] Class 12 6 अवकलज के अनुप्रयोग प्रश्नावली [Pages 132 - 139]
लघु उत्तरीयं प्रश्न
नमक का एक गोलाकार गेंद पानी में इस प्रकार घुल रहा है कि किसी क्षण उसके आयतन के घटने की दर उसके पृष्ठीय क्षेत्रफल के समानुपाती है। सिद्ध कीजिए कि उसकी त्रिज्या एक अचर दर से घट रही है।
यदि किसी वृत्त का क्षेत्रफल एक समान दर से बढ़ता है, तो सिद्ध कीजिए कि उसका परिमाप (परिधि) उसकी त्रिज्या के व्युत्क्रमानुपाती होता है
एक पतंग 151.5 cm की ऊंचाई पर क्षैतिज दिशा में गतिमान है। यदि पतंग की चाल 10 m/s है, तो डोरी को कितनी तेजी से छोड़ा जा रहा है, जब उसकी दूरी पतंग उड़ाने वाले लड़के से 250 cm है? लड़के की ऊंचाई 1.5 m है।
एक दूसरे से 45° पर झुकी हुई दो सड़कों के संधि-स्थल से दो मनुष्य A तथा B, एक ही समय v वेग से चलना प्रारम्भ करते हैं। यदि वे अलग-अलग सड़कों पर चलते हैं तो उनके परस्पर एक दूसरे से अलग होने की दर ज्ञात कीजिए।
कोण θ, 0 < θ < `π/2`, ज्ञात कीजिए जो अपने sine से दोगुनी तेजी से बढ़ता है।
(1.999)5 का सन्निकट मान ज्ञात कीजिए।
एक खोखले बेलनाकार खोल, जिसकी आंतरिक तथा बाह्य त्रिज्याएँ क्रमश: 3 cm तथा 3.0005 cm हैं, में धातु के आयतन का सन्निकट मान ज्ञात कीजिए।
2m लंबा एक मनुष्य 1`2/3` m/s की दर से किसी बिजली के खंभे की ओर, जो जमीन से 5`1/3`m ऊपर है, चल रहा है। उसकी छाया का अग्रभाग किसी दर से गतिमान है? उसकी छाया की लंबाई, उस समय किस दर से परिवर्तित हो रही है, जब वह प्रकाश के स्रोत के आधार से 3`1/3`m दूर है?
किसी तरनताल को सफाई के लिए खाली करना है।यदि ताल को बंद करने के t seconds बाद ताल में पानी की मात्रा, लिटर में, L से निरूपित होती है तथा L = 200 (10 – t)2 तो 5 seconds में अंत में पानी कितनी तेजी से बाहर निकल रहा है? प्रथम 5 seconds में पानी के बाहर निकलने की औसत दर क्या है?
किसी घन का आयतन एक अचर दर से बढ़ रहा है। सिद्ध कीजिए कि उसके पृष्ठीय क्षेत्रफल की वृद्धि उसकी भुजा की व्युत्क्रमानुपाती है।
x तथा y दो वर्गों की भुजाएँ हैं, इस प्रकार कि y = x – x2 दूसरे वर्ग के क्षेत्रफल में परिवर्तनकी दर पहले वर्ग के क्षेत्रफल के सापेक्ष ज्ञात कीजिए।
वक्र 2x = y2 तथा 2xy = k के लंबकोणीय प्रतिच्छेद के लिए प्रतिबंध ज्ञात कीजिए।
सिद्ध कीजिए कि वक्र xy = 4 तथा x2 + y2 = 8, एक दूसरे को स्पर्श करते हैं।
वक्र `sqrt(x) + sqrt(y) = 4` उस बिंदु के निर्देशांक ज्ञात कीजिए, जिस पर स्पर्श रेखा का अक्षों से झुकाव समान है।
वक्र y = 4 – x2 तथा y = x2 का प्रतिच्छेद-कोण ज्ञात कीजिए।
सिद्ध कीजिए कि वक्र y2 = 4x तथा x2 + y2 – 6x + 1 = 0 एक दूसरे को बिंदु (1, 2) पर स्पर्श करते हैं।
वक्र 3x2 – y2 = 8 के उन अभिलम्ब रेखाओं के समीकरण ज्ञात कीजिए, जो रेखा x + 3y = 4 के समांतर हैं।
वक्र x2 + y2 – 2x – 4y + 1 = 0 के किन बिंदुओं पर स्पर्श रेखाएँ y-अक्ष के समांतर हैं।
सिद्ध कीजिए कि रेखा `x/"a" +y/"b"` = 1 , वक्र y = b . e-x/a को उस बिंदु पर स्पर्श करती है जिस पर वक्र y-अक्ष को काटता है।
सिद्ध कीजिए कि f (x) = 2x + cot–1x + log `(sqrt(1+x^2) - x)`, R में वर्धमान फलन है।
सिद्ध कीजिए कि a ≥ 1 के लिए f (x) = `sqrt3` sinx - cosx - 2ax + b, R में हासमान फलन है।
सिद्ध किजिए कि f (x) = tan–1(sinx + cosx), अतंराल 0,`pi/4` में एक वर्धमान फलन है।
किस बिंदु पर, वक्र y = – x3 + 3x2 + 9x – 27 की प्रवणता उच्चतम है? उच्चतम प्रवणता भी ज्ञात कीजिए।
सिद्ध कीजिए कि f (x) = sinx + `sqrt3` cosx का उच्चिष्ठ मान x = `pi/6` पर है।
दीर्घ उत्तरीय प्रश्न
यदि किसी समकोण त्रिभुज की एक भुजा तथा कर्ण की लंबाईयों का योगफल दिया हुआ है, तो सिद्ध कीजिए कि त्रिभुज का क्षेत्रफल उच्चतम है, जब उनके मध्य का कोण `pi/3` है।
फलन f (x) = x5 – 5x4 + 5x3 – 1 के स्थानीय उच्चिष्ठ, स्थानीय निम्निष्ठ तथा नति परिवर्तन के बिंदुओं को ज्ञात कीजिए। साथ ही संगत स्थानीय उच्चतम तथा स्थानीय निम्नतम मानों को भी ज्ञात कीजिए।
किसी नगर में एक टेलीफोन कंपनी की सूची में 500 ग्राहक हैं और वह प्रत्येक ग्राहक से प्रतिवर्ष 300 रु निश्चित शुल्क वसूलती हैं। कंपनी वार्षिक शुल्क बढ़ाना चाहती है, और ऐसा माना जाता है कि प्रत्येक 1 रु की वृद्धि करने पर एक ग्राहक टेलीफोन सेवा लेना समाप्त कर देगा।ज्ञात कीजिए कि कितनी वृद्धि करने से महत्तम (उच्चतम) लाभ होगा।
यदि सरल रेखा x cosα + y sinα = p वक्र `x^2/"a"^2 + y^2/"b"^2` = 1 को स्पर्श करती है, तो सिद्ध कीजिए कि a2 cos2α + b2 sin2α = p2
c2 क्षेत्रफल के किसी दिए हुए गत्ते से वर्गाकार आधार का एक खुला हुआ बाक्स बनाना है। सिद्ध कीजिए कि बाक्स का महत्तम आयतन `c^3/(6sqrt3)` घन इकाई है।
36 cm परिमाप वाले आयत की विमाएँ ज्ञात कीजिए जिसे उसकी भुजाओं में से किसी एक के चारों ओर घुमाने पर अधिक से अधिक सम्भव आयतन प्रसर्प (sweep) हो।
यदि किसी घन तथा गोले के पृष्ठीय क्षेत्रफल का योगफल अचर है तो घन के एक कोर (edge) तथा गोले के व्यास का अनुपात उस समय क्या है जब उनके आयतन का योगफल निम्नतम है?
AB किसी वृत्त का एक व्यास है तथा C उसकी परिधि पर कोई बिंदु है। सिद्ध कीजिए कि ∆ ABC का क्षेत्रफल महत्तम उस समय होगा जब वह समद्धिबाहु है।
वर्गाकार आधार तथा ऊर्ध्वाधर पृष्ठ वाले धातु के किसी बाक्स में 1024 cm3 वस्तु आती है। शीर्ष तथा आधार के पृष्ठों के माल (वस्तु) का मूल्य Rs 5/cm2 है तथा पृष्ठों के मान का मूल्य Rs 2.50/cm2 हैं। बाक्स का निम्नतम मूल्य ज्ञात कीजिए।
भुजा x, 2x और `x/3` किसी आयताकार समांतर षट्फलक तथा एक गोले के पृष्ठीय क्षेत्रफल का योगफल अचर दिया हुआ है। सिद्ध कीजिए कि उनके आयतन का योगफल निम्नतम होगा, यदि x गोले की त्रिज्या के तीन गुने के बराबर है। उनके आयतन के योगफल का निम्नतम मान भी ज्ञात कीजिए।
वस्तुनिष्ठ प्रश्न 35 से 59 तक
किसी समबाहु त्रिभुज की भुजाएँ 2 cm/sec की दर से बढ़ रही हैं। जब भुजा 10 cm है, त्रिभुज का क्षेत्रफल ______ की दर से बढ़ता है।
`10 "cm"^(2/"s")`
`sqrt(3) "cm"^(2/s)`
`"10"sqrt(3) "cm"^(2/s)`
`10/3 "cm"^(2/s)`
एक क्षैतिज फर्श पर 5 मीटर लंबी एक सीढ़ी किसी ऊर्ध्वाधर दीवार पर झुकी है।यदि सीढ़ी का ऊपरी सिरा 10 cm/sec, की दर से नीचे की ओर फिसल रहा है तो सीढ़ी तथा फर्श के बीच का कोण, उस समय जब सीढ़ी का निचला सिरा दीवार से 2 मीटर दूर है:
`1/10` radian/sec
`1/20` radian/sec
20 radian/sec
10` radian/sec
बिंदु (0, 0) पर वक्र y = `x^(1/5)` की ______
एक ऊर्ध्वाधर स्पर्शी रेखा (y-अक्ष के समांतर)
एक क्षैतिज स्पर्शी रेखा (x-अक्ष के समांतर)
एक तिरछी स्पर्शी रेखा
कोई भी स्पर्शी रेखा नहीं
रेखा x + 3y = 8 के समांतर, वक् 3x2 – y2 = 8 के अभिलंब का समीकरण है।
3x – y = 8
3x + y + 8 = 0
x + 3y ± 8 = 0
x + 3y = 0
यदि वक्र ay + x2 = 7 तथा x3 = y बिंदु (1, 1) पर लंबवत काटते हैं, तो a का मान है ______
1
0
-6
6
यदि y = x4 – 10 तथा यदि x, 2 से 1.99 तक परिवर्तित होता है, तो y का परिवर्तन क्या (कितना) है,
0.32
0.032
5.68
5.968
वक्र y (1 + x2 ) = 2 – x के, उस बिंदु पर, जहाँ यह x-अक्ष को काटती है, स्पर्श रेखा का समीकरण ______
x + 5y = 2
x – 5y = 2
5x – y = 2
5x + y = 2 है।
वे बिंदु, जिन पर वक्र y = x3 – 12x + 18 की स्पर्श रेखाएँ x-अक्ष के समांतर हैं,
(2, –2), (–2, –34)
(2, 34), (–2, 0)
(0, 35), (–2, 0)
(2, 2), (–2, 34) है।
वक्र y = e2x की, बिंदु (0, 1) पर, स्पर्श रेखा x-अक्ष से बिंदु ______
(0, 1)
`-1/2,0`
(2, 0)
(0, 2) पर मिलती है।
वक्र x = t2 + 3t – 8, y = 2t2 – 2t – 5 की, बिंदु (2, -1) पर, स्पर्श रेखा की प्रवणता ______ है।
`22/7`
`6/7`
`(-6)/7`
-6 है।
दो वक्र x3 – 3xy2 + 2 = 0 तथा 3x2 y – y3 – 2 = 0 किस कोण पर प्रतिच्छेद करते हैं:
`pi/4`
`pi/3`
`pi/2`
`pi/6`
वह अंतराल, जिसमें फलन f (x) = 2x3 + 9x2 + 12x – 1 हासमान है,
`[-1, oo)`
[–2, –1]
`(– oo, –2]`
[–1, 1]
मान लीजिए कि f : R → R, f (x) = 2x + cosx द्वारा परिभाषित है, तो f ______
का x = π पर एक निम्निष्ठ है।
का x = 0 पर एक उच्चिष्ठ है।
एक हासमान फलन है।
एक वर्धमान फलन है।
y = x(x – 3)2, x के नीचे दिए हुए मानों के लिए हासमान है,
1 < x < 3
x < 0
x > 0
0 < x < `3/ 2`
फलन f(x) = 4 sin3x – 6 sin2x + 12 sinx + 100 ______
`(pi, (3pi)/2)` में निरंतर वर्धमान है।
`(pi/2, pi)` में निंरतर हासमान है।
`(-pi)/2, pi/2` में निंरतर हासमान है।
`0,pi/2` में निंरतर हासमान है।
निम्नलिखित में से कौन-सा फलन 0, `pi/2` में हासमान है,
sin2x
tanx
cosx
cos 3x
फलन f(x) = tanx – x ______
सदैव वर्धमान है।
सदैव हासमान है।
कभी भी वर्धमान नहीं है।
कभी वर्धमान है कभी हासमान है।
यदि x एक वास्तविक संख्या है, तो x2 – 8x + 17 का निम्नतम मान ______
–1
0
1
2 है।
बहुपद x3 – 18x2 + 96x का, अंतराल [0, 9] में, निम्नतम मान ______
126
0
135
160 है।
फलन f (x) = 2x3 – 3x2 – 12x + 4 के ______
दो स्थानीय उच्चतम बिंदु हैं।
दो स्थानीय निम्नतम बिंदु हैं।
एक उच्चतम तथा एक निम्नतम है।
कोई भी उच्चतम या निम्नतम नहीं है।
sin x . cos x का उच्चतम मान है ______
`1/4`
`1/2`
`sqrt2`
`2sqrt2`
f (x) = 2 sin3x + 3 cos3x का मान x = `(5pi)/6`, पर ______
उच्चतम
निम्नतम
शून्य
न तो उच्चतम और न निम्नतम है।
वक् y = –x3 + 3x2 + 9x – 27 की उच्चतम प्रवणता ______
0
12
16
32
f(x) = xx का स्तब्ध बिंदु है ______
x = e
x = `1/"e"`
x = 1
x = `sqrt("e")`
`(1/x)^x`का उच्चतम मान है ______
e
ee
`"e"^(1/"e")`
`(1/"e")^(1/"e")`
प्रश्न 60 से 64 तक प्रत्येक में रिक्त स्थान की पूर्ति कीजिए-
वक् y = 4x2 + 2x – 8 तथा, y = x3 – x + 13 एक दूसरे को बिंदु ______ पर स्पर्श करते हैं।
वक्र y = tanx के (0, 0) पर अभिलंब का समीकरण ______ है।
a के वे मान जिनके लिए फलन f (x) = sinx – ax + b, R में वर्धमान है ______ .हैं।
फलन f(x) = `(2x^2 - 1)/x^4`, x > 0, अंतराल में ______ हासमान है।
फलन f(x) = `"a"x + "b"/x` (a > 0, b > 0, x > 0) का निम्नतम मान ______ है।
Solutions for 6: अवकलज के अनुप्रयोग
![NCERT Exemplar solutions for Mathematics [Hindi] Class 12 chapter 6 - अवकलज के अनुप्रयोग NCERT Exemplar solutions for Mathematics [Hindi] Class 12 chapter 6 - अवकलज के अनुप्रयोग - Shaalaa.com](/images/mathematics-hindi-class-12_6:5f2b1b2038084cf381bfa42c826a928c.jpg)
NCERT Exemplar solutions for Mathematics [Hindi] Class 12 chapter 6 - अवकलज के अनुप्रयोग
Shaalaa.com has the CBSE Mathematics Mathematics [Hindi] Class 12 CBSE solutions in a manner that help students grasp basic concepts better and faster. The detailed, step-by-step solutions will help you understand the concepts better and clarify any confusion. NCERT Exemplar solutions for Mathematics Mathematics [Hindi] Class 12 CBSE 6 (अवकलज के अनुप्रयोग) include all questions with answers and detailed explanations. This will clear students' doubts about questions and improve their application skills while preparing for board exams.
Further, we at Shaalaa.com provide such solutions so students can prepare for written exams. NCERT Exemplar textbook solutions can be a core help for self-study and provide excellent self-help guidance for students.
Concepts covered in Mathematics [Hindi] Class 12 chapter 6 अवकलज के अनुप्रयोग are उच्चतम और निम्नतम, एक संवृत्त अंतराल में किसी फलन का उच्चतम और निम्नतम मान, सन्निकटन, अवकलज के अनुप्रयोग, राशियों के परिवर्तन की दर, वर्धमान और हासमान फलन, स्पर्श रेखाएँ और अभिलंब.
Using NCERT Exemplar Mathematics [Hindi] Class 12 solutions अवकलज के अनुप्रयोग exercise by students is an easy way to prepare for the exams, as they involve solutions arranged chapter-wise and also page-wise. The questions involved in NCERT Exemplar Solutions are essential questions that can be asked in the final exam. Maximum CBSE Mathematics [Hindi] Class 12 students prefer NCERT Exemplar Textbook Solutions to score more in exams.
Get the free view of Chapter 6, अवकलज के अनुप्रयोग Mathematics [Hindi] Class 12 additional questions for Mathematics Mathematics [Hindi] Class 12 CBSE, and you can use Shaalaa.com to keep it handy for your exam preparation.